| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sitgval.b |
|- B = ( Base ` W ) |
| 2 |
|
sitgval.j |
|- J = ( TopOpen ` W ) |
| 3 |
|
sitgval.s |
|- S = ( sigaGen ` J ) |
| 4 |
|
sitgval.0 |
|- .0. = ( 0g ` W ) |
| 5 |
|
sitgval.x |
|- .x. = ( .s ` W ) |
| 6 |
|
sitgval.h |
|- H = ( RRHom ` ( Scalar ` W ) ) |
| 7 |
|
sitgval.1 |
|- ( ph -> W e. V ) |
| 8 |
|
sitgval.2 |
|- ( ph -> M e. U. ran measures ) |
| 9 |
|
sibfmbl.1 |
|- ( ph -> F e. dom ( W sitg M ) ) |
| 10 |
|
dmmeas |
|- ( M e. U. ran measures -> dom M e. U. ran sigAlgebra ) |
| 11 |
8 10
|
syl |
|- ( ph -> dom M e. U. ran sigAlgebra ) |
| 12 |
|
fvexd |
|- ( ph -> ( TopOpen ` W ) e. _V ) |
| 13 |
2 12
|
eqeltrid |
|- ( ph -> J e. _V ) |
| 14 |
13
|
sgsiga |
|- ( ph -> ( sigaGen ` J ) e. U. ran sigAlgebra ) |
| 15 |
3 14
|
eqeltrid |
|- ( ph -> S e. U. ran sigAlgebra ) |
| 16 |
1 2 3 4 5 6 7 8 9
|
sibfmbl |
|- ( ph -> F e. ( dom M MblFnM S ) ) |
| 17 |
11 15 16
|
mbfmf |
|- ( ph -> F : U. dom M --> U. S ) |
| 18 |
3
|
unieqi |
|- U. S = U. ( sigaGen ` J ) |
| 19 |
|
unisg |
|- ( J e. _V -> U. ( sigaGen ` J ) = U. J ) |
| 20 |
13 19
|
syl |
|- ( ph -> U. ( sigaGen ` J ) = U. J ) |
| 21 |
18 20
|
eqtrid |
|- ( ph -> U. S = U. J ) |
| 22 |
21
|
feq3d |
|- ( ph -> ( F : U. dom M --> U. S <-> F : U. dom M --> U. J ) ) |
| 23 |
17 22
|
mpbid |
|- ( ph -> F : U. dom M --> U. J ) |