| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sitgval.b |  |-  B = ( Base ` W ) | 
						
							| 2 |  | sitgval.j |  |-  J = ( TopOpen ` W ) | 
						
							| 3 |  | sitgval.s |  |-  S = ( sigaGen ` J ) | 
						
							| 4 |  | sitgval.0 |  |-  .0. = ( 0g ` W ) | 
						
							| 5 |  | sitgval.x |  |-  .x. = ( .s ` W ) | 
						
							| 6 |  | sitgval.h |  |-  H = ( RRHom ` ( Scalar ` W ) ) | 
						
							| 7 |  | sitgval.1 |  |-  ( ph -> W e. V ) | 
						
							| 8 |  | sitgval.2 |  |-  ( ph -> M e. U. ran measures ) | 
						
							| 9 |  | sibfmbl.1 |  |-  ( ph -> F e. dom ( W sitg M ) ) | 
						
							| 10 |  | dmmeas |  |-  ( M e. U. ran measures -> dom M e. U. ran sigAlgebra ) | 
						
							| 11 | 8 10 | syl |  |-  ( ph -> dom M e. U. ran sigAlgebra ) | 
						
							| 12 |  | fvexd |  |-  ( ph -> ( TopOpen ` W ) e. _V ) | 
						
							| 13 | 2 12 | eqeltrid |  |-  ( ph -> J e. _V ) | 
						
							| 14 | 13 | sgsiga |  |-  ( ph -> ( sigaGen ` J ) e. U. ran sigAlgebra ) | 
						
							| 15 | 3 14 | eqeltrid |  |-  ( ph -> S e. U. ran sigAlgebra ) | 
						
							| 16 | 1 2 3 4 5 6 7 8 9 | sibfmbl |  |-  ( ph -> F e. ( dom M MblFnM S ) ) | 
						
							| 17 | 11 15 16 | mbfmf |  |-  ( ph -> F : U. dom M --> U. S ) | 
						
							| 18 | 3 | unieqi |  |-  U. S = U. ( sigaGen ` J ) | 
						
							| 19 |  | unisg |  |-  ( J e. _V -> U. ( sigaGen ` J ) = U. J ) | 
						
							| 20 | 13 19 | syl |  |-  ( ph -> U. ( sigaGen ` J ) = U. J ) | 
						
							| 21 | 18 20 | eqtrid |  |-  ( ph -> U. S = U. J ) | 
						
							| 22 | 21 | feq3d |  |-  ( ph -> ( F : U. dom M --> U. S <-> F : U. dom M --> U. J ) ) | 
						
							| 23 | 17 22 | mpbid |  |-  ( ph -> F : U. dom M --> U. J ) |