Metamath Proof Explorer


Theorem sibff

Description: A simple function is a function. (Contributed by Thierry Arnoux, 19-Feb-2018)

Ref Expression
Hypotheses sitgval.b
|- B = ( Base ` W )
sitgval.j
|- J = ( TopOpen ` W )
sitgval.s
|- S = ( sigaGen ` J )
sitgval.0
|- .0. = ( 0g ` W )
sitgval.x
|- .x. = ( .s ` W )
sitgval.h
|- H = ( RRHom ` ( Scalar ` W ) )
sitgval.1
|- ( ph -> W e. V )
sitgval.2
|- ( ph -> M e. U. ran measures )
sibfmbl.1
|- ( ph -> F e. dom ( W sitg M ) )
Assertion sibff
|- ( ph -> F : U. dom M --> U. J )

Proof

Step Hyp Ref Expression
1 sitgval.b
 |-  B = ( Base ` W )
2 sitgval.j
 |-  J = ( TopOpen ` W )
3 sitgval.s
 |-  S = ( sigaGen ` J )
4 sitgval.0
 |-  .0. = ( 0g ` W )
5 sitgval.x
 |-  .x. = ( .s ` W )
6 sitgval.h
 |-  H = ( RRHom ` ( Scalar ` W ) )
7 sitgval.1
 |-  ( ph -> W e. V )
8 sitgval.2
 |-  ( ph -> M e. U. ran measures )
9 sibfmbl.1
 |-  ( ph -> F e. dom ( W sitg M ) )
10 dmmeas
 |-  ( M e. U. ran measures -> dom M e. U. ran sigAlgebra )
11 8 10 syl
 |-  ( ph -> dom M e. U. ran sigAlgebra )
12 fvexd
 |-  ( ph -> ( TopOpen ` W ) e. _V )
13 2 12 eqeltrid
 |-  ( ph -> J e. _V )
14 13 sgsiga
 |-  ( ph -> ( sigaGen ` J ) e. U. ran sigAlgebra )
15 3 14 eqeltrid
 |-  ( ph -> S e. U. ran sigAlgebra )
16 1 2 3 4 5 6 7 8 9 sibfmbl
 |-  ( ph -> F e. ( dom M MblFnM S ) )
17 11 15 16 mbfmf
 |-  ( ph -> F : U. dom M --> U. S )
18 3 unieqi
 |-  U. S = U. ( sigaGen ` J )
19 unisg
 |-  ( J e. _V -> U. ( sigaGen ` J ) = U. J )
20 13 19 syl
 |-  ( ph -> U. ( sigaGen ` J ) = U. J )
21 18 20 syl5eq
 |-  ( ph -> U. S = U. J )
22 21 feq3d
 |-  ( ph -> ( F : U. dom M --> U. S <-> F : U. dom M --> U. J ) )
23 17 22 mpbid
 |-  ( ph -> F : U. dom M --> U. J )