| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sitgval.b | ⊢ 𝐵  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | sitgval.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝑊 ) | 
						
							| 3 |  | sitgval.s | ⊢ 𝑆  =  ( sigaGen ‘ 𝐽 ) | 
						
							| 4 |  | sitgval.0 | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 5 |  | sitgval.x | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 6 |  | sitgval.h | ⊢ 𝐻  =  ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 7 |  | sitgval.1 | ⊢ ( 𝜑  →  𝑊  ∈  𝑉 ) | 
						
							| 8 |  | sitgval.2 | ⊢ ( 𝜑  →  𝑀  ∈  ∪  ran  measures ) | 
						
							| 9 |  | sibfmbl.1 | ⊢ ( 𝜑  →  𝐹  ∈  dom  ( 𝑊 sitg 𝑀 ) ) | 
						
							| 10 |  | dmmeas | ⊢ ( 𝑀  ∈  ∪  ran  measures  →  dom  𝑀  ∈  ∪  ran  sigAlgebra ) | 
						
							| 11 | 8 10 | syl | ⊢ ( 𝜑  →  dom  𝑀  ∈  ∪  ran  sigAlgebra ) | 
						
							| 12 |  | fvexd | ⊢ ( 𝜑  →  ( TopOpen ‘ 𝑊 )  ∈  V ) | 
						
							| 13 | 2 12 | eqeltrid | ⊢ ( 𝜑  →  𝐽  ∈  V ) | 
						
							| 14 | 13 | sgsiga | ⊢ ( 𝜑  →  ( sigaGen ‘ 𝐽 )  ∈  ∪  ran  sigAlgebra ) | 
						
							| 15 | 3 14 | eqeltrid | ⊢ ( 𝜑  →  𝑆  ∈  ∪  ran  sigAlgebra ) | 
						
							| 16 | 1 2 3 4 5 6 7 8 9 | sibfmbl | ⊢ ( 𝜑  →  𝐹  ∈  ( dom  𝑀 MblFnM 𝑆 ) ) | 
						
							| 17 | 11 15 16 | mbfmf | ⊢ ( 𝜑  →  𝐹 : ∪  dom  𝑀 ⟶ ∪  𝑆 ) | 
						
							| 18 | 3 | unieqi | ⊢ ∪  𝑆  =  ∪  ( sigaGen ‘ 𝐽 ) | 
						
							| 19 |  | unisg | ⊢ ( 𝐽  ∈  V  →  ∪  ( sigaGen ‘ 𝐽 )  =  ∪  𝐽 ) | 
						
							| 20 | 13 19 | syl | ⊢ ( 𝜑  →  ∪  ( sigaGen ‘ 𝐽 )  =  ∪  𝐽 ) | 
						
							| 21 | 18 20 | eqtrid | ⊢ ( 𝜑  →  ∪  𝑆  =  ∪  𝐽 ) | 
						
							| 22 | 21 | feq3d | ⊢ ( 𝜑  →  ( 𝐹 : ∪  dom  𝑀 ⟶ ∪  𝑆  ↔  𝐹 : ∪  dom  𝑀 ⟶ ∪  𝐽 ) ) | 
						
							| 23 | 17 22 | mpbid | ⊢ ( 𝜑  →  𝐹 : ∪  dom  𝑀 ⟶ ∪  𝐽 ) |