Metamath Proof Explorer


Theorem sibff

Description: A simple function is a function. (Contributed by Thierry Arnoux, 19-Feb-2018)

Ref Expression
Hypotheses sitgval.b 𝐵 = ( Base ‘ 𝑊 )
sitgval.j 𝐽 = ( TopOpen ‘ 𝑊 )
sitgval.s 𝑆 = ( sigaGen ‘ 𝐽 )
sitgval.0 0 = ( 0g𝑊 )
sitgval.x · = ( ·𝑠𝑊 )
sitgval.h 𝐻 = ( ℝHom ‘ ( Scalar ‘ 𝑊 ) )
sitgval.1 ( 𝜑𝑊𝑉 )
sitgval.2 ( 𝜑𝑀 ran measures )
sibfmbl.1 ( 𝜑𝐹 ∈ dom ( 𝑊 sitg 𝑀 ) )
Assertion sibff ( 𝜑𝐹 : dom 𝑀 𝐽 )

Proof

Step Hyp Ref Expression
1 sitgval.b 𝐵 = ( Base ‘ 𝑊 )
2 sitgval.j 𝐽 = ( TopOpen ‘ 𝑊 )
3 sitgval.s 𝑆 = ( sigaGen ‘ 𝐽 )
4 sitgval.0 0 = ( 0g𝑊 )
5 sitgval.x · = ( ·𝑠𝑊 )
6 sitgval.h 𝐻 = ( ℝHom ‘ ( Scalar ‘ 𝑊 ) )
7 sitgval.1 ( 𝜑𝑊𝑉 )
8 sitgval.2 ( 𝜑𝑀 ran measures )
9 sibfmbl.1 ( 𝜑𝐹 ∈ dom ( 𝑊 sitg 𝑀 ) )
10 dmmeas ( 𝑀 ran measures → dom 𝑀 ran sigAlgebra )
11 8 10 syl ( 𝜑 → dom 𝑀 ran sigAlgebra )
12 fvexd ( 𝜑 → ( TopOpen ‘ 𝑊 ) ∈ V )
13 2 12 eqeltrid ( 𝜑𝐽 ∈ V )
14 13 sgsiga ( 𝜑 → ( sigaGen ‘ 𝐽 ) ∈ ran sigAlgebra )
15 3 14 eqeltrid ( 𝜑𝑆 ran sigAlgebra )
16 1 2 3 4 5 6 7 8 9 sibfmbl ( 𝜑𝐹 ∈ ( dom 𝑀 MblFnM 𝑆 ) )
17 11 15 16 mbfmf ( 𝜑𝐹 : dom 𝑀 𝑆 )
18 3 unieqi 𝑆 = ( sigaGen ‘ 𝐽 )
19 unisg ( 𝐽 ∈ V → ( sigaGen ‘ 𝐽 ) = 𝐽 )
20 13 19 syl ( 𝜑 ( sigaGen ‘ 𝐽 ) = 𝐽 )
21 18 20 syl5eq ( 𝜑 𝑆 = 𝐽 )
22 21 feq3d ( 𝜑 → ( 𝐹 : dom 𝑀 𝑆𝐹 : dom 𝑀 𝐽 ) )
23 17 22 mpbid ( 𝜑𝐹 : dom 𝑀 𝐽 )