Step |
Hyp |
Ref |
Expression |
1 |
|
sitgval.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
sitgval.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) |
3 |
|
sitgval.s |
⊢ 𝑆 = ( sigaGen ‘ 𝐽 ) |
4 |
|
sitgval.0 |
⊢ 0 = ( 0g ‘ 𝑊 ) |
5 |
|
sitgval.x |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
6 |
|
sitgval.h |
⊢ 𝐻 = ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) |
7 |
|
sitgval.1 |
⊢ ( 𝜑 → 𝑊 ∈ 𝑉 ) |
8 |
|
sitgval.2 |
⊢ ( 𝜑 → 𝑀 ∈ ∪ ran measures ) |
9 |
|
sibfmbl.1 |
⊢ ( 𝜑 → 𝐹 ∈ dom ( 𝑊 sitg 𝑀 ) ) |
10 |
|
dmmeas |
⊢ ( 𝑀 ∈ ∪ ran measures → dom 𝑀 ∈ ∪ ran sigAlgebra ) |
11 |
8 10
|
syl |
⊢ ( 𝜑 → dom 𝑀 ∈ ∪ ran sigAlgebra ) |
12 |
|
fvexd |
⊢ ( 𝜑 → ( TopOpen ‘ 𝑊 ) ∈ V ) |
13 |
2 12
|
eqeltrid |
⊢ ( 𝜑 → 𝐽 ∈ V ) |
14 |
13
|
sgsiga |
⊢ ( 𝜑 → ( sigaGen ‘ 𝐽 ) ∈ ∪ ran sigAlgebra ) |
15 |
3 14
|
eqeltrid |
⊢ ( 𝜑 → 𝑆 ∈ ∪ ran sigAlgebra ) |
16 |
1 2 3 4 5 6 7 8 9
|
sibfmbl |
⊢ ( 𝜑 → 𝐹 ∈ ( dom 𝑀 MblFnM 𝑆 ) ) |
17 |
11 15 16
|
mbfmf |
⊢ ( 𝜑 → 𝐹 : ∪ dom 𝑀 ⟶ ∪ 𝑆 ) |
18 |
3
|
unieqi |
⊢ ∪ 𝑆 = ∪ ( sigaGen ‘ 𝐽 ) |
19 |
|
unisg |
⊢ ( 𝐽 ∈ V → ∪ ( sigaGen ‘ 𝐽 ) = ∪ 𝐽 ) |
20 |
13 19
|
syl |
⊢ ( 𝜑 → ∪ ( sigaGen ‘ 𝐽 ) = ∪ 𝐽 ) |
21 |
18 20
|
syl5eq |
⊢ ( 𝜑 → ∪ 𝑆 = ∪ 𝐽 ) |
22 |
21
|
feq3d |
⊢ ( 𝜑 → ( 𝐹 : ∪ dom 𝑀 ⟶ ∪ 𝑆 ↔ 𝐹 : ∪ dom 𝑀 ⟶ ∪ 𝐽 ) ) |
23 |
17 22
|
mpbid |
⊢ ( 𝜑 → 𝐹 : ∪ dom 𝑀 ⟶ ∪ 𝐽 ) |