| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sitgval.b | ⊢ 𝐵  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | sitgval.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝑊 ) | 
						
							| 3 |  | sitgval.s | ⊢ 𝑆  =  ( sigaGen ‘ 𝐽 ) | 
						
							| 4 |  | sitgval.0 | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 5 |  | sitgval.x | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 6 |  | sitgval.h | ⊢ 𝐻  =  ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 7 |  | sitgval.1 | ⊢ ( 𝜑  →  𝑊  ∈  𝑉 ) | 
						
							| 8 |  | sitgval.2 | ⊢ ( 𝜑  →  𝑀  ∈  ∪  ran  measures ) | 
						
							| 9 |  | sibfmbl.1 | ⊢ ( 𝜑  →  𝐹  ∈  dom  ( 𝑊 sitg 𝑀 ) ) | 
						
							| 10 |  | sibfinima.g | ⊢ ( 𝜑  →  𝐺  ∈  dom  ( 𝑊 sitg 𝑀 ) ) | 
						
							| 11 |  | sibfinima.w | ⊢ ( 𝜑  →  𝑊  ∈  TopSp ) | 
						
							| 12 |  | sibfinima.j | ⊢ ( 𝜑  →  𝐽  ∈  Fre ) | 
						
							| 13 |  | measbasedom | ⊢ ( 𝑀  ∈  ∪  ran  measures  ↔  𝑀  ∈  ( measures ‘ dom  𝑀 ) ) | 
						
							| 14 | 8 13 | sylib | ⊢ ( 𝜑  →  𝑀  ∈  ( measures ‘ dom  𝑀 ) ) | 
						
							| 15 | 14 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  →  𝑀  ∈  ( measures ‘ dom  𝑀 ) ) | 
						
							| 16 |  | dmmeas | ⊢ ( 𝑀  ∈  ∪  ran  measures  →  dom  𝑀  ∈  ∪  ran  sigAlgebra ) | 
						
							| 17 | 8 16 | syl | ⊢ ( 𝜑  →  dom  𝑀  ∈  ∪  ran  sigAlgebra ) | 
						
							| 18 | 17 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  →  dom  𝑀  ∈  ∪  ran  sigAlgebra ) | 
						
							| 19 | 12 | sgsiga | ⊢ ( 𝜑  →  ( sigaGen ‘ 𝐽 )  ∈  ∪  ran  sigAlgebra ) | 
						
							| 20 | 3 19 | eqeltrid | ⊢ ( 𝜑  →  𝑆  ∈  ∪  ran  sigAlgebra ) | 
						
							| 21 | 20 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  →  𝑆  ∈  ∪  ran  sigAlgebra ) | 
						
							| 22 | 1 2 3 4 5 6 7 8 9 | sibfmbl | ⊢ ( 𝜑  →  𝐹  ∈  ( dom  𝑀 MblFnM 𝑆 ) ) | 
						
							| 23 | 22 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  →  𝐹  ∈  ( dom  𝑀 MblFnM 𝑆 ) ) | 
						
							| 24 | 2 | tpstop | ⊢ ( 𝑊  ∈  TopSp  →  𝐽  ∈  Top ) | 
						
							| 25 |  | cldssbrsiga | ⊢ ( 𝐽  ∈  Top  →  ( Clsd ‘ 𝐽 )  ⊆  ( sigaGen ‘ 𝐽 ) ) | 
						
							| 26 | 11 24 25 | 3syl | ⊢ ( 𝜑  →  ( Clsd ‘ 𝐽 )  ⊆  ( sigaGen ‘ 𝐽 ) ) | 
						
							| 27 | 26 3 | sseqtrrdi | ⊢ ( 𝜑  →  ( Clsd ‘ 𝐽 )  ⊆  𝑆 ) | 
						
							| 28 | 27 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  →  ( Clsd ‘ 𝐽 )  ⊆  𝑆 ) | 
						
							| 29 | 12 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  →  𝐽  ∈  Fre ) | 
						
							| 30 | 1 2 3 4 5 6 7 8 9 | sibff | ⊢ ( 𝜑  →  𝐹 : ∪  dom  𝑀 ⟶ ∪  𝐽 ) | 
						
							| 31 | 30 | frnd | ⊢ ( 𝜑  →  ran  𝐹  ⊆  ∪  𝐽 ) | 
						
							| 32 | 31 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  →  ran  𝐹  ⊆  ∪  𝐽 ) | 
						
							| 33 |  | simp2 | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  →  𝑋  ∈  ran  𝐹 ) | 
						
							| 34 | 32 33 | sseldd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  →  𝑋  ∈  ∪  𝐽 ) | 
						
							| 35 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 36 | 35 | t1sncld | ⊢ ( ( 𝐽  ∈  Fre  ∧  𝑋  ∈  ∪  𝐽 )  →  { 𝑋 }  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 37 | 29 34 36 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  →  { 𝑋 }  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 38 | 28 37 | sseldd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  →  { 𝑋 }  ∈  𝑆 ) | 
						
							| 39 | 18 21 23 38 | mbfmcnvima | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  →  ( ◡ 𝐹  “  { 𝑋 } )  ∈  dom  𝑀 ) | 
						
							| 40 | 1 2 3 4 5 6 7 8 10 | sibfmbl | ⊢ ( 𝜑  →  𝐺  ∈  ( dom  𝑀 MblFnM 𝑆 ) ) | 
						
							| 41 | 40 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  →  𝐺  ∈  ( dom  𝑀 MblFnM 𝑆 ) ) | 
						
							| 42 | 1 2 3 4 5 6 7 8 10 | sibff | ⊢ ( 𝜑  →  𝐺 : ∪  dom  𝑀 ⟶ ∪  𝐽 ) | 
						
							| 43 | 42 | frnd | ⊢ ( 𝜑  →  ran  𝐺  ⊆  ∪  𝐽 ) | 
						
							| 44 | 43 | 3ad2ant1 | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  →  ran  𝐺  ⊆  ∪  𝐽 ) | 
						
							| 45 |  | simp3 | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  →  𝑌  ∈  ran  𝐺 ) | 
						
							| 46 | 44 45 | sseldd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  →  𝑌  ∈  ∪  𝐽 ) | 
						
							| 47 | 35 | t1sncld | ⊢ ( ( 𝐽  ∈  Fre  ∧  𝑌  ∈  ∪  𝐽 )  →  { 𝑌 }  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 48 | 29 46 47 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  →  { 𝑌 }  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 49 | 28 48 | sseldd | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  →  { 𝑌 }  ∈  𝑆 ) | 
						
							| 50 | 18 21 41 49 | mbfmcnvima | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  →  ( ◡ 𝐺  “  { 𝑌 } )  ∈  dom  𝑀 ) | 
						
							| 51 |  | inelsiga | ⊢ ( ( dom  𝑀  ∈  ∪  ran  sigAlgebra  ∧  ( ◡ 𝐹  “  { 𝑋 } )  ∈  dom  𝑀  ∧  ( ◡ 𝐺  “  { 𝑌 } )  ∈  dom  𝑀 )  →  ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) )  ∈  dom  𝑀 ) | 
						
							| 52 | 18 39 50 51 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  →  ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) )  ∈  dom  𝑀 ) | 
						
							| 53 |  | measvxrge0 | ⊢ ( ( 𝑀  ∈  ( measures ‘ dom  𝑀 )  ∧  ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) )  ∈  dom  𝑀 )  →  ( 𝑀 ‘ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 54 | 15 52 53 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  →  ( 𝑀 ‘ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 55 |  | elxrge0 | ⊢ ( ( 𝑀 ‘ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) ) )  ∈  ( 0 [,] +∞ )  ↔  ( ( 𝑀 ‘ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) ) )  ∈  ℝ*  ∧  0  ≤  ( 𝑀 ‘ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) ) ) ) ) | 
						
							| 56 | 55 | simplbi | ⊢ ( ( 𝑀 ‘ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) ) )  ∈  ( 0 [,] +∞ )  →  ( 𝑀 ‘ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) ) )  ∈  ℝ* ) | 
						
							| 57 | 54 56 | syl | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  →  ( 𝑀 ‘ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) ) )  ∈  ℝ* ) | 
						
							| 58 | 57 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  ( 𝑋  ≠   0   ∨  𝑌  ≠   0  ) )  →  ( 𝑀 ‘ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) ) )  ∈  ℝ* ) | 
						
							| 59 |  | 0re | ⊢ 0  ∈  ℝ | 
						
							| 60 | 59 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  ( 𝑋  ≠   0   ∨  𝑌  ≠   0  ) )  →  0  ∈  ℝ ) | 
						
							| 61 | 55 | simprbi | ⊢ ( ( 𝑀 ‘ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) ) )  ∈  ( 0 [,] +∞ )  →  0  ≤  ( 𝑀 ‘ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) ) ) ) | 
						
							| 62 | 54 61 | syl | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  →  0  ≤  ( 𝑀 ‘ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) ) ) ) | 
						
							| 63 | 62 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  ( 𝑋  ≠   0   ∨  𝑌  ≠   0  ) )  →  0  ≤  ( 𝑀 ‘ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) ) ) ) | 
						
							| 64 | 57 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  𝑋  ≠   0  )  →  ( 𝑀 ‘ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) ) )  ∈  ℝ* ) | 
						
							| 65 | 15 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  𝑋  ≠   0  )  →  𝑀  ∈  ( measures ‘ dom  𝑀 ) ) | 
						
							| 66 | 39 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  𝑋  ≠   0  )  →  ( ◡ 𝐹  “  { 𝑋 } )  ∈  dom  𝑀 ) | 
						
							| 67 |  | measvxrge0 | ⊢ ( ( 𝑀  ∈  ( measures ‘ dom  𝑀 )  ∧  ( ◡ 𝐹  “  { 𝑋 } )  ∈  dom  𝑀 )  →  ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑋 } ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 68 | 65 66 67 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  𝑋  ≠   0  )  →  ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑋 } ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 69 |  | elxrge0 | ⊢ ( ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑋 } ) )  ∈  ( 0 [,] +∞ )  ↔  ( ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑋 } ) )  ∈  ℝ*  ∧  0  ≤  ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑋 } ) ) ) ) | 
						
							| 70 | 69 | simplbi | ⊢ ( ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑋 } ) )  ∈  ( 0 [,] +∞ )  →  ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑋 } ) )  ∈  ℝ* ) | 
						
							| 71 | 68 70 | syl | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  𝑋  ≠   0  )  →  ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑋 } ) )  ∈  ℝ* ) | 
						
							| 72 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 73 | 72 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  𝑋  ≠   0  )  →  +∞  ∈  ℝ* ) | 
						
							| 74 | 52 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  𝑋  ≠   0  )  →  ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) )  ∈  dom  𝑀 ) | 
						
							| 75 |  | inss1 | ⊢ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) )  ⊆  ( ◡ 𝐹  “  { 𝑋 } ) | 
						
							| 76 | 75 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  𝑋  ≠   0  )  →  ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) )  ⊆  ( ◡ 𝐹  “  { 𝑋 } ) ) | 
						
							| 77 | 65 74 66 76 | measssd | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  𝑋  ≠   0  )  →  ( 𝑀 ‘ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) ) )  ≤  ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑋 } ) ) ) | 
						
							| 78 |  | simpl1 | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  𝑋  ≠   0  )  →  𝜑 ) | 
						
							| 79 | 33 | anim1i | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  𝑋  ≠   0  )  →  ( 𝑋  ∈  ran  𝐹  ∧  𝑋  ≠   0  ) ) | 
						
							| 80 |  | eldifsn | ⊢ ( 𝑋  ∈  ( ran  𝐹  ∖  {  0  } )  ↔  ( 𝑋  ∈  ran  𝐹  ∧  𝑋  ≠   0  ) ) | 
						
							| 81 | 79 80 | sylibr | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  𝑋  ≠   0  )  →  𝑋  ∈  ( ran  𝐹  ∖  {  0  } ) ) | 
						
							| 82 | 1 2 3 4 5 6 7 8 9 | sibfima | ⊢ ( ( 𝜑  ∧  𝑋  ∈  ( ran  𝐹  ∖  {  0  } ) )  →  ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑋 } ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 83 | 78 81 82 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  𝑋  ≠   0  )  →  ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑋 } ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 84 |  | elico2 | ⊢ ( ( 0  ∈  ℝ  ∧  +∞  ∈  ℝ* )  →  ( ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑋 } ) )  ∈  ( 0 [,) +∞ )  ↔  ( ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑋 } ) )  ∈  ℝ  ∧  0  ≤  ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑋 } ) )  ∧  ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑋 } ) )  <  +∞ ) ) ) | 
						
							| 85 | 59 72 84 | mp2an | ⊢ ( ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑋 } ) )  ∈  ( 0 [,) +∞ )  ↔  ( ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑋 } ) )  ∈  ℝ  ∧  0  ≤  ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑋 } ) )  ∧  ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑋 } ) )  <  +∞ ) ) | 
						
							| 86 | 85 | simp3bi | ⊢ ( ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑋 } ) )  ∈  ( 0 [,) +∞ )  →  ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑋 } ) )  <  +∞ ) | 
						
							| 87 | 83 86 | syl | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  𝑋  ≠   0  )  →  ( 𝑀 ‘ ( ◡ 𝐹  “  { 𝑋 } ) )  <  +∞ ) | 
						
							| 88 | 64 71 73 77 87 | xrlelttrd | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  𝑋  ≠   0  )  →  ( 𝑀 ‘ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) ) )  <  +∞ ) | 
						
							| 89 | 57 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  𝑌  ≠   0  )  →  ( 𝑀 ‘ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) ) )  ∈  ℝ* ) | 
						
							| 90 | 15 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  𝑌  ≠   0  )  →  𝑀  ∈  ( measures ‘ dom  𝑀 ) ) | 
						
							| 91 | 50 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  𝑌  ≠   0  )  →  ( ◡ 𝐺  “  { 𝑌 } )  ∈  dom  𝑀 ) | 
						
							| 92 |  | measvxrge0 | ⊢ ( ( 𝑀  ∈  ( measures ‘ dom  𝑀 )  ∧  ( ◡ 𝐺  “  { 𝑌 } )  ∈  dom  𝑀 )  →  ( 𝑀 ‘ ( ◡ 𝐺  “  { 𝑌 } ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 93 | 90 91 92 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  𝑌  ≠   0  )  →  ( 𝑀 ‘ ( ◡ 𝐺  “  { 𝑌 } ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 94 |  | elxrge0 | ⊢ ( ( 𝑀 ‘ ( ◡ 𝐺  “  { 𝑌 } ) )  ∈  ( 0 [,] +∞ )  ↔  ( ( 𝑀 ‘ ( ◡ 𝐺  “  { 𝑌 } ) )  ∈  ℝ*  ∧  0  ≤  ( 𝑀 ‘ ( ◡ 𝐺  “  { 𝑌 } ) ) ) ) | 
						
							| 95 | 94 | simplbi | ⊢ ( ( 𝑀 ‘ ( ◡ 𝐺  “  { 𝑌 } ) )  ∈  ( 0 [,] +∞ )  →  ( 𝑀 ‘ ( ◡ 𝐺  “  { 𝑌 } ) )  ∈  ℝ* ) | 
						
							| 96 | 93 95 | syl | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  𝑌  ≠   0  )  →  ( 𝑀 ‘ ( ◡ 𝐺  “  { 𝑌 } ) )  ∈  ℝ* ) | 
						
							| 97 | 72 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  𝑌  ≠   0  )  →  +∞  ∈  ℝ* ) | 
						
							| 98 | 52 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  𝑌  ≠   0  )  →  ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) )  ∈  dom  𝑀 ) | 
						
							| 99 |  | inss2 | ⊢ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) )  ⊆  ( ◡ 𝐺  “  { 𝑌 } ) | 
						
							| 100 | 99 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  𝑌  ≠   0  )  →  ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) )  ⊆  ( ◡ 𝐺  “  { 𝑌 } ) ) | 
						
							| 101 | 90 98 91 100 | measssd | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  𝑌  ≠   0  )  →  ( 𝑀 ‘ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) ) )  ≤  ( 𝑀 ‘ ( ◡ 𝐺  “  { 𝑌 } ) ) ) | 
						
							| 102 |  | simpl1 | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  𝑌  ≠   0  )  →  𝜑 ) | 
						
							| 103 | 45 | anim1i | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  𝑌  ≠   0  )  →  ( 𝑌  ∈  ran  𝐺  ∧  𝑌  ≠   0  ) ) | 
						
							| 104 |  | eldifsn | ⊢ ( 𝑌  ∈  ( ran  𝐺  ∖  {  0  } )  ↔  ( 𝑌  ∈  ran  𝐺  ∧  𝑌  ≠   0  ) ) | 
						
							| 105 | 103 104 | sylibr | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  𝑌  ≠   0  )  →  𝑌  ∈  ( ran  𝐺  ∖  {  0  } ) ) | 
						
							| 106 | 1 2 3 4 5 6 7 8 10 | sibfima | ⊢ ( ( 𝜑  ∧  𝑌  ∈  ( ran  𝐺  ∖  {  0  } ) )  →  ( 𝑀 ‘ ( ◡ 𝐺  “  { 𝑌 } ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 107 | 102 105 106 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  𝑌  ≠   0  )  →  ( 𝑀 ‘ ( ◡ 𝐺  “  { 𝑌 } ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 108 |  | elico2 | ⊢ ( ( 0  ∈  ℝ  ∧  +∞  ∈  ℝ* )  →  ( ( 𝑀 ‘ ( ◡ 𝐺  “  { 𝑌 } ) )  ∈  ( 0 [,) +∞ )  ↔  ( ( 𝑀 ‘ ( ◡ 𝐺  “  { 𝑌 } ) )  ∈  ℝ  ∧  0  ≤  ( 𝑀 ‘ ( ◡ 𝐺  “  { 𝑌 } ) )  ∧  ( 𝑀 ‘ ( ◡ 𝐺  “  { 𝑌 } ) )  <  +∞ ) ) ) | 
						
							| 109 | 59 72 108 | mp2an | ⊢ ( ( 𝑀 ‘ ( ◡ 𝐺  “  { 𝑌 } ) )  ∈  ( 0 [,) +∞ )  ↔  ( ( 𝑀 ‘ ( ◡ 𝐺  “  { 𝑌 } ) )  ∈  ℝ  ∧  0  ≤  ( 𝑀 ‘ ( ◡ 𝐺  “  { 𝑌 } ) )  ∧  ( 𝑀 ‘ ( ◡ 𝐺  “  { 𝑌 } ) )  <  +∞ ) ) | 
						
							| 110 | 109 | simp3bi | ⊢ ( ( 𝑀 ‘ ( ◡ 𝐺  “  { 𝑌 } ) )  ∈  ( 0 [,) +∞ )  →  ( 𝑀 ‘ ( ◡ 𝐺  “  { 𝑌 } ) )  <  +∞ ) | 
						
							| 111 | 107 110 | syl | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  𝑌  ≠   0  )  →  ( 𝑀 ‘ ( ◡ 𝐺  “  { 𝑌 } ) )  <  +∞ ) | 
						
							| 112 | 89 96 97 101 111 | xrlelttrd | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  𝑌  ≠   0  )  →  ( 𝑀 ‘ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) ) )  <  +∞ ) | 
						
							| 113 | 88 112 | jaodan | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  ( 𝑋  ≠   0   ∨  𝑌  ≠   0  ) )  →  ( 𝑀 ‘ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) ) )  <  +∞ ) | 
						
							| 114 |  | xrre3 | ⊢ ( ( ( ( 𝑀 ‘ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) ) )  ∈  ℝ*  ∧  0  ∈  ℝ )  ∧  ( 0  ≤  ( 𝑀 ‘ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) ) )  ∧  ( 𝑀 ‘ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) ) )  <  +∞ ) )  →  ( 𝑀 ‘ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) ) )  ∈  ℝ ) | 
						
							| 115 | 58 60 63 113 114 | syl22anc | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  ( 𝑋  ≠   0   ∨  𝑌  ≠   0  ) )  →  ( 𝑀 ‘ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) ) )  ∈  ℝ ) | 
						
							| 116 |  | elico2 | ⊢ ( ( 0  ∈  ℝ  ∧  +∞  ∈  ℝ* )  →  ( ( 𝑀 ‘ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) ) )  ∈  ( 0 [,) +∞ )  ↔  ( ( 𝑀 ‘ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) ) )  ∈  ℝ  ∧  0  ≤  ( 𝑀 ‘ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) ) )  ∧  ( 𝑀 ‘ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) ) )  <  +∞ ) ) ) | 
						
							| 117 | 59 72 116 | mp2an | ⊢ ( ( 𝑀 ‘ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) ) )  ∈  ( 0 [,) +∞ )  ↔  ( ( 𝑀 ‘ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) ) )  ∈  ℝ  ∧  0  ≤  ( 𝑀 ‘ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) ) )  ∧  ( 𝑀 ‘ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) ) )  <  +∞ ) ) | 
						
							| 118 | 115 63 113 117 | syl3anbrc | ⊢ ( ( ( 𝜑  ∧  𝑋  ∈  ran  𝐹  ∧  𝑌  ∈  ran  𝐺 )  ∧  ( 𝑋  ≠   0   ∨  𝑌  ≠   0  ) )  →  ( 𝑀 ‘ ( ( ◡ 𝐹  “  { 𝑋 } )  ∩  ( ◡ 𝐺  “  { 𝑌 } ) ) )  ∈  ( 0 [,) +∞ ) ) |