Metamath Proof Explorer


Theorem sibfinima

Description: The measure of the intersection of any two preimages by simple functions is a real number. (Contributed by Thierry Arnoux, 21-Mar-2018)

Ref Expression
Hypotheses sitgval.b 𝐵 = ( Base ‘ 𝑊 )
sitgval.j 𝐽 = ( TopOpen ‘ 𝑊 )
sitgval.s 𝑆 = ( sigaGen ‘ 𝐽 )
sitgval.0 0 = ( 0g𝑊 )
sitgval.x · = ( ·𝑠𝑊 )
sitgval.h 𝐻 = ( ℝHom ‘ ( Scalar ‘ 𝑊 ) )
sitgval.1 ( 𝜑𝑊𝑉 )
sitgval.2 ( 𝜑𝑀 ran measures )
sibfmbl.1 ( 𝜑𝐹 ∈ dom ( 𝑊 sitg 𝑀 ) )
sibfinima.g ( 𝜑𝐺 ∈ dom ( 𝑊 sitg 𝑀 ) )
sibfinima.w ( 𝜑𝑊 ∈ TopSp )
sibfinima.j ( 𝜑𝐽 ∈ Fre )
Assertion sibfinima ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ ( 𝑋0𝑌0 ) ) → ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) ∈ ( 0 [,) +∞ ) )

Proof

Step Hyp Ref Expression
1 sitgval.b 𝐵 = ( Base ‘ 𝑊 )
2 sitgval.j 𝐽 = ( TopOpen ‘ 𝑊 )
3 sitgval.s 𝑆 = ( sigaGen ‘ 𝐽 )
4 sitgval.0 0 = ( 0g𝑊 )
5 sitgval.x · = ( ·𝑠𝑊 )
6 sitgval.h 𝐻 = ( ℝHom ‘ ( Scalar ‘ 𝑊 ) )
7 sitgval.1 ( 𝜑𝑊𝑉 )
8 sitgval.2 ( 𝜑𝑀 ran measures )
9 sibfmbl.1 ( 𝜑𝐹 ∈ dom ( 𝑊 sitg 𝑀 ) )
10 sibfinima.g ( 𝜑𝐺 ∈ dom ( 𝑊 sitg 𝑀 ) )
11 sibfinima.w ( 𝜑𝑊 ∈ TopSp )
12 sibfinima.j ( 𝜑𝐽 ∈ Fre )
13 measbasedom ( 𝑀 ran measures ↔ 𝑀 ∈ ( measures ‘ dom 𝑀 ) )
14 8 13 sylib ( 𝜑𝑀 ∈ ( measures ‘ dom 𝑀 ) )
15 14 3ad2ant1 ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) → 𝑀 ∈ ( measures ‘ dom 𝑀 ) )
16 dmmeas ( 𝑀 ran measures → dom 𝑀 ran sigAlgebra )
17 8 16 syl ( 𝜑 → dom 𝑀 ran sigAlgebra )
18 17 3ad2ant1 ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) → dom 𝑀 ran sigAlgebra )
19 12 sgsiga ( 𝜑 → ( sigaGen ‘ 𝐽 ) ∈ ran sigAlgebra )
20 3 19 eqeltrid ( 𝜑𝑆 ran sigAlgebra )
21 20 3ad2ant1 ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) → 𝑆 ran sigAlgebra )
22 1 2 3 4 5 6 7 8 9 sibfmbl ( 𝜑𝐹 ∈ ( dom 𝑀 MblFnM 𝑆 ) )
23 22 3ad2ant1 ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) → 𝐹 ∈ ( dom 𝑀 MblFnM 𝑆 ) )
24 2 tpstop ( 𝑊 ∈ TopSp → 𝐽 ∈ Top )
25 cldssbrsiga ( 𝐽 ∈ Top → ( Clsd ‘ 𝐽 ) ⊆ ( sigaGen ‘ 𝐽 ) )
26 11 24 25 3syl ( 𝜑 → ( Clsd ‘ 𝐽 ) ⊆ ( sigaGen ‘ 𝐽 ) )
27 26 3 sseqtrrdi ( 𝜑 → ( Clsd ‘ 𝐽 ) ⊆ 𝑆 )
28 27 3ad2ant1 ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) → ( Clsd ‘ 𝐽 ) ⊆ 𝑆 )
29 12 3ad2ant1 ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) → 𝐽 ∈ Fre )
30 1 2 3 4 5 6 7 8 9 sibff ( 𝜑𝐹 : dom 𝑀 𝐽 )
31 30 frnd ( 𝜑 → ran 𝐹 𝐽 )
32 31 3ad2ant1 ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) → ran 𝐹 𝐽 )
33 simp2 ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) → 𝑋 ∈ ran 𝐹 )
34 32 33 sseldd ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) → 𝑋 𝐽 )
35 eqid 𝐽 = 𝐽
36 35 t1sncld ( ( 𝐽 ∈ Fre ∧ 𝑋 𝐽 ) → { 𝑋 } ∈ ( Clsd ‘ 𝐽 ) )
37 29 34 36 syl2anc ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) → { 𝑋 } ∈ ( Clsd ‘ 𝐽 ) )
38 28 37 sseldd ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) → { 𝑋 } ∈ 𝑆 )
39 18 21 23 38 mbfmcnvima ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) → ( 𝐹 “ { 𝑋 } ) ∈ dom 𝑀 )
40 1 2 3 4 5 6 7 8 10 sibfmbl ( 𝜑𝐺 ∈ ( dom 𝑀 MblFnM 𝑆 ) )
41 40 3ad2ant1 ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) → 𝐺 ∈ ( dom 𝑀 MblFnM 𝑆 ) )
42 1 2 3 4 5 6 7 8 10 sibff ( 𝜑𝐺 : dom 𝑀 𝐽 )
43 42 frnd ( 𝜑 → ran 𝐺 𝐽 )
44 43 3ad2ant1 ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) → ran 𝐺 𝐽 )
45 simp3 ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) → 𝑌 ∈ ran 𝐺 )
46 44 45 sseldd ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) → 𝑌 𝐽 )
47 35 t1sncld ( ( 𝐽 ∈ Fre ∧ 𝑌 𝐽 ) → { 𝑌 } ∈ ( Clsd ‘ 𝐽 ) )
48 29 46 47 syl2anc ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) → { 𝑌 } ∈ ( Clsd ‘ 𝐽 ) )
49 28 48 sseldd ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) → { 𝑌 } ∈ 𝑆 )
50 18 21 41 49 mbfmcnvima ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) → ( 𝐺 “ { 𝑌 } ) ∈ dom 𝑀 )
51 inelsiga ( ( dom 𝑀 ran sigAlgebra ∧ ( 𝐹 “ { 𝑋 } ) ∈ dom 𝑀 ∧ ( 𝐺 “ { 𝑌 } ) ∈ dom 𝑀 ) → ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ∈ dom 𝑀 )
52 18 39 50 51 syl3anc ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) → ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ∈ dom 𝑀 )
53 measvxrge0 ( ( 𝑀 ∈ ( measures ‘ dom 𝑀 ) ∧ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ∈ dom 𝑀 ) → ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) ∈ ( 0 [,] +∞ ) )
54 15 52 53 syl2anc ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) → ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) ∈ ( 0 [,] +∞ ) )
55 elxrge0 ( ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) ∈ ℝ* ∧ 0 ≤ ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) ) )
56 55 simplbi ( ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) ∈ ( 0 [,] +∞ ) → ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) ∈ ℝ* )
57 54 56 syl ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) → ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) ∈ ℝ* )
58 57 adantr ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ ( 𝑋0𝑌0 ) ) → ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) ∈ ℝ* )
59 0re 0 ∈ ℝ
60 59 a1i ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ ( 𝑋0𝑌0 ) ) → 0 ∈ ℝ )
61 55 simprbi ( ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) )
62 54 61 syl ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) → 0 ≤ ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) )
63 62 adantr ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ ( 𝑋0𝑌0 ) ) → 0 ≤ ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) )
64 57 adantr ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ 𝑋0 ) → ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) ∈ ℝ* )
65 15 adantr ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ 𝑋0 ) → 𝑀 ∈ ( measures ‘ dom 𝑀 ) )
66 39 adantr ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ 𝑋0 ) → ( 𝐹 “ { 𝑋 } ) ∈ dom 𝑀 )
67 measvxrge0 ( ( 𝑀 ∈ ( measures ‘ dom 𝑀 ) ∧ ( 𝐹 “ { 𝑋 } ) ∈ dom 𝑀 ) → ( 𝑀 ‘ ( 𝐹 “ { 𝑋 } ) ) ∈ ( 0 [,] +∞ ) )
68 65 66 67 syl2anc ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ 𝑋0 ) → ( 𝑀 ‘ ( 𝐹 “ { 𝑋 } ) ) ∈ ( 0 [,] +∞ ) )
69 elxrge0 ( ( 𝑀 ‘ ( 𝐹 “ { 𝑋 } ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝑀 ‘ ( 𝐹 “ { 𝑋 } ) ) ∈ ℝ* ∧ 0 ≤ ( 𝑀 ‘ ( 𝐹 “ { 𝑋 } ) ) ) )
70 69 simplbi ( ( 𝑀 ‘ ( 𝐹 “ { 𝑋 } ) ) ∈ ( 0 [,] +∞ ) → ( 𝑀 ‘ ( 𝐹 “ { 𝑋 } ) ) ∈ ℝ* )
71 68 70 syl ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ 𝑋0 ) → ( 𝑀 ‘ ( 𝐹 “ { 𝑋 } ) ) ∈ ℝ* )
72 pnfxr +∞ ∈ ℝ*
73 72 a1i ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ 𝑋0 ) → +∞ ∈ ℝ* )
74 52 adantr ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ 𝑋0 ) → ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ∈ dom 𝑀 )
75 inss1 ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ⊆ ( 𝐹 “ { 𝑋 } )
76 75 a1i ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ 𝑋0 ) → ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ⊆ ( 𝐹 “ { 𝑋 } ) )
77 65 74 66 76 measssd ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ 𝑋0 ) → ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) ≤ ( 𝑀 ‘ ( 𝐹 “ { 𝑋 } ) ) )
78 simpl1 ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ 𝑋0 ) → 𝜑 )
79 33 anim1i ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ 𝑋0 ) → ( 𝑋 ∈ ran 𝐹𝑋0 ) )
80 eldifsn ( 𝑋 ∈ ( ran 𝐹 ∖ { 0 } ) ↔ ( 𝑋 ∈ ran 𝐹𝑋0 ) )
81 79 80 sylibr ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ 𝑋0 ) → 𝑋 ∈ ( ran 𝐹 ∖ { 0 } ) )
82 1 2 3 4 5 6 7 8 9 sibfima ( ( 𝜑𝑋 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑀 ‘ ( 𝐹 “ { 𝑋 } ) ) ∈ ( 0 [,) +∞ ) )
83 78 81 82 syl2anc ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ 𝑋0 ) → ( 𝑀 ‘ ( 𝐹 “ { 𝑋 } ) ) ∈ ( 0 [,) +∞ ) )
84 elico2 ( ( 0 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( ( 𝑀 ‘ ( 𝐹 “ { 𝑋 } ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝑀 ‘ ( 𝐹 “ { 𝑋 } ) ) ∈ ℝ ∧ 0 ≤ ( 𝑀 ‘ ( 𝐹 “ { 𝑋 } ) ) ∧ ( 𝑀 ‘ ( 𝐹 “ { 𝑋 } ) ) < +∞ ) ) )
85 59 72 84 mp2an ( ( 𝑀 ‘ ( 𝐹 “ { 𝑋 } ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝑀 ‘ ( 𝐹 “ { 𝑋 } ) ) ∈ ℝ ∧ 0 ≤ ( 𝑀 ‘ ( 𝐹 “ { 𝑋 } ) ) ∧ ( 𝑀 ‘ ( 𝐹 “ { 𝑋 } ) ) < +∞ ) )
86 85 simp3bi ( ( 𝑀 ‘ ( 𝐹 “ { 𝑋 } ) ) ∈ ( 0 [,) +∞ ) → ( 𝑀 ‘ ( 𝐹 “ { 𝑋 } ) ) < +∞ )
87 83 86 syl ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ 𝑋0 ) → ( 𝑀 ‘ ( 𝐹 “ { 𝑋 } ) ) < +∞ )
88 64 71 73 77 87 xrlelttrd ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ 𝑋0 ) → ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) < +∞ )
89 57 adantr ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ 𝑌0 ) → ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) ∈ ℝ* )
90 15 adantr ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ 𝑌0 ) → 𝑀 ∈ ( measures ‘ dom 𝑀 ) )
91 50 adantr ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ 𝑌0 ) → ( 𝐺 “ { 𝑌 } ) ∈ dom 𝑀 )
92 measvxrge0 ( ( 𝑀 ∈ ( measures ‘ dom 𝑀 ) ∧ ( 𝐺 “ { 𝑌 } ) ∈ dom 𝑀 ) → ( 𝑀 ‘ ( 𝐺 “ { 𝑌 } ) ) ∈ ( 0 [,] +∞ ) )
93 90 91 92 syl2anc ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ 𝑌0 ) → ( 𝑀 ‘ ( 𝐺 “ { 𝑌 } ) ) ∈ ( 0 [,] +∞ ) )
94 elxrge0 ( ( 𝑀 ‘ ( 𝐺 “ { 𝑌 } ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝑀 ‘ ( 𝐺 “ { 𝑌 } ) ) ∈ ℝ* ∧ 0 ≤ ( 𝑀 ‘ ( 𝐺 “ { 𝑌 } ) ) ) )
95 94 simplbi ( ( 𝑀 ‘ ( 𝐺 “ { 𝑌 } ) ) ∈ ( 0 [,] +∞ ) → ( 𝑀 ‘ ( 𝐺 “ { 𝑌 } ) ) ∈ ℝ* )
96 93 95 syl ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ 𝑌0 ) → ( 𝑀 ‘ ( 𝐺 “ { 𝑌 } ) ) ∈ ℝ* )
97 72 a1i ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ 𝑌0 ) → +∞ ∈ ℝ* )
98 52 adantr ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ 𝑌0 ) → ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ∈ dom 𝑀 )
99 inss2 ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ⊆ ( 𝐺 “ { 𝑌 } )
100 99 a1i ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ 𝑌0 ) → ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ⊆ ( 𝐺 “ { 𝑌 } ) )
101 90 98 91 100 measssd ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ 𝑌0 ) → ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) ≤ ( 𝑀 ‘ ( 𝐺 “ { 𝑌 } ) ) )
102 simpl1 ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ 𝑌0 ) → 𝜑 )
103 45 anim1i ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ 𝑌0 ) → ( 𝑌 ∈ ran 𝐺𝑌0 ) )
104 eldifsn ( 𝑌 ∈ ( ran 𝐺 ∖ { 0 } ) ↔ ( 𝑌 ∈ ran 𝐺𝑌0 ) )
105 103 104 sylibr ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ 𝑌0 ) → 𝑌 ∈ ( ran 𝐺 ∖ { 0 } ) )
106 1 2 3 4 5 6 7 8 10 sibfima ( ( 𝜑𝑌 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( 𝑀 ‘ ( 𝐺 “ { 𝑌 } ) ) ∈ ( 0 [,) +∞ ) )
107 102 105 106 syl2anc ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ 𝑌0 ) → ( 𝑀 ‘ ( 𝐺 “ { 𝑌 } ) ) ∈ ( 0 [,) +∞ ) )
108 elico2 ( ( 0 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( ( 𝑀 ‘ ( 𝐺 “ { 𝑌 } ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝑀 ‘ ( 𝐺 “ { 𝑌 } ) ) ∈ ℝ ∧ 0 ≤ ( 𝑀 ‘ ( 𝐺 “ { 𝑌 } ) ) ∧ ( 𝑀 ‘ ( 𝐺 “ { 𝑌 } ) ) < +∞ ) ) )
109 59 72 108 mp2an ( ( 𝑀 ‘ ( 𝐺 “ { 𝑌 } ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝑀 ‘ ( 𝐺 “ { 𝑌 } ) ) ∈ ℝ ∧ 0 ≤ ( 𝑀 ‘ ( 𝐺 “ { 𝑌 } ) ) ∧ ( 𝑀 ‘ ( 𝐺 “ { 𝑌 } ) ) < +∞ ) )
110 109 simp3bi ( ( 𝑀 ‘ ( 𝐺 “ { 𝑌 } ) ) ∈ ( 0 [,) +∞ ) → ( 𝑀 ‘ ( 𝐺 “ { 𝑌 } ) ) < +∞ )
111 107 110 syl ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ 𝑌0 ) → ( 𝑀 ‘ ( 𝐺 “ { 𝑌 } ) ) < +∞ )
112 89 96 97 101 111 xrlelttrd ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ 𝑌0 ) → ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) < +∞ )
113 88 112 jaodan ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ ( 𝑋0𝑌0 ) ) → ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) < +∞ )
114 xrre3 ( ( ( ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) ∈ ℝ* ∧ 0 ∈ ℝ ) ∧ ( 0 ≤ ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) ∧ ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) < +∞ ) ) → ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) ∈ ℝ )
115 58 60 63 113 114 syl22anc ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ ( 𝑋0𝑌0 ) ) → ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) ∈ ℝ )
116 elico2 ( ( 0 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) ∈ ℝ ∧ 0 ≤ ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) ∧ ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) < +∞ ) ) )
117 59 72 116 mp2an ( ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) ∈ ℝ ∧ 0 ≤ ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) ∧ ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) < +∞ ) )
118 115 63 113 117 syl3anbrc ( ( ( 𝜑𝑋 ∈ ran 𝐹𝑌 ∈ ran 𝐺 ) ∧ ( 𝑋0𝑌0 ) ) → ( 𝑀 ‘ ( ( 𝐹 “ { 𝑋 } ) ∩ ( 𝐺 “ { 𝑌 } ) ) ) ∈ ( 0 [,) +∞ ) )