Step |
Hyp |
Ref |
Expression |
1 |
|
sitgval.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
sitgval.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) |
3 |
|
sitgval.s |
⊢ 𝑆 = ( sigaGen ‘ 𝐽 ) |
4 |
|
sitgval.0 |
⊢ 0 = ( 0g ‘ 𝑊 ) |
5 |
|
sitgval.x |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
6 |
|
sitgval.h |
⊢ 𝐻 = ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) |
7 |
|
sitgval.1 |
⊢ ( 𝜑 → 𝑊 ∈ 𝑉 ) |
8 |
|
sitgval.2 |
⊢ ( 𝜑 → 𝑀 ∈ ∪ ran measures ) |
9 |
|
sibfmbl.1 |
⊢ ( 𝜑 → 𝐹 ∈ dom ( 𝑊 sitg 𝑀 ) ) |
10 |
|
sibfinima.g |
⊢ ( 𝜑 → 𝐺 ∈ dom ( 𝑊 sitg 𝑀 ) ) |
11 |
|
sibfinima.w |
⊢ ( 𝜑 → 𝑊 ∈ TopSp ) |
12 |
|
sibfinima.j |
⊢ ( 𝜑 → 𝐽 ∈ Fre ) |
13 |
|
measbasedom |
⊢ ( 𝑀 ∈ ∪ ran measures ↔ 𝑀 ∈ ( measures ‘ dom 𝑀 ) ) |
14 |
8 13
|
sylib |
⊢ ( 𝜑 → 𝑀 ∈ ( measures ‘ dom 𝑀 ) ) |
15 |
14
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) → 𝑀 ∈ ( measures ‘ dom 𝑀 ) ) |
16 |
|
dmmeas |
⊢ ( 𝑀 ∈ ∪ ran measures → dom 𝑀 ∈ ∪ ran sigAlgebra ) |
17 |
8 16
|
syl |
⊢ ( 𝜑 → dom 𝑀 ∈ ∪ ran sigAlgebra ) |
18 |
17
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) → dom 𝑀 ∈ ∪ ran sigAlgebra ) |
19 |
12
|
sgsiga |
⊢ ( 𝜑 → ( sigaGen ‘ 𝐽 ) ∈ ∪ ran sigAlgebra ) |
20 |
3 19
|
eqeltrid |
⊢ ( 𝜑 → 𝑆 ∈ ∪ ran sigAlgebra ) |
21 |
20
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
22 |
1 2 3 4 5 6 7 8 9
|
sibfmbl |
⊢ ( 𝜑 → 𝐹 ∈ ( dom 𝑀 MblFnM 𝑆 ) ) |
23 |
22
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) → 𝐹 ∈ ( dom 𝑀 MblFnM 𝑆 ) ) |
24 |
2
|
tpstop |
⊢ ( 𝑊 ∈ TopSp → 𝐽 ∈ Top ) |
25 |
|
cldssbrsiga |
⊢ ( 𝐽 ∈ Top → ( Clsd ‘ 𝐽 ) ⊆ ( sigaGen ‘ 𝐽 ) ) |
26 |
11 24 25
|
3syl |
⊢ ( 𝜑 → ( Clsd ‘ 𝐽 ) ⊆ ( sigaGen ‘ 𝐽 ) ) |
27 |
26 3
|
sseqtrrdi |
⊢ ( 𝜑 → ( Clsd ‘ 𝐽 ) ⊆ 𝑆 ) |
28 |
27
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) → ( Clsd ‘ 𝐽 ) ⊆ 𝑆 ) |
29 |
12
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) → 𝐽 ∈ Fre ) |
30 |
1 2 3 4 5 6 7 8 9
|
sibff |
⊢ ( 𝜑 → 𝐹 : ∪ dom 𝑀 ⟶ ∪ 𝐽 ) |
31 |
30
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ∪ 𝐽 ) |
32 |
31
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) → ran 𝐹 ⊆ ∪ 𝐽 ) |
33 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) → 𝑋 ∈ ran 𝐹 ) |
34 |
32 33
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) → 𝑋 ∈ ∪ 𝐽 ) |
35 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
36 |
35
|
t1sncld |
⊢ ( ( 𝐽 ∈ Fre ∧ 𝑋 ∈ ∪ 𝐽 ) → { 𝑋 } ∈ ( Clsd ‘ 𝐽 ) ) |
37 |
29 34 36
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) → { 𝑋 } ∈ ( Clsd ‘ 𝐽 ) ) |
38 |
28 37
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) → { 𝑋 } ∈ 𝑆 ) |
39 |
18 21 23 38
|
mbfmcnvima |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) → ( ◡ 𝐹 “ { 𝑋 } ) ∈ dom 𝑀 ) |
40 |
1 2 3 4 5 6 7 8 10
|
sibfmbl |
⊢ ( 𝜑 → 𝐺 ∈ ( dom 𝑀 MblFnM 𝑆 ) ) |
41 |
40
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) → 𝐺 ∈ ( dom 𝑀 MblFnM 𝑆 ) ) |
42 |
1 2 3 4 5 6 7 8 10
|
sibff |
⊢ ( 𝜑 → 𝐺 : ∪ dom 𝑀 ⟶ ∪ 𝐽 ) |
43 |
42
|
frnd |
⊢ ( 𝜑 → ran 𝐺 ⊆ ∪ 𝐽 ) |
44 |
43
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) → ran 𝐺 ⊆ ∪ 𝐽 ) |
45 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) → 𝑌 ∈ ran 𝐺 ) |
46 |
44 45
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) → 𝑌 ∈ ∪ 𝐽 ) |
47 |
35
|
t1sncld |
⊢ ( ( 𝐽 ∈ Fre ∧ 𝑌 ∈ ∪ 𝐽 ) → { 𝑌 } ∈ ( Clsd ‘ 𝐽 ) ) |
48 |
29 46 47
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) → { 𝑌 } ∈ ( Clsd ‘ 𝐽 ) ) |
49 |
28 48
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) → { 𝑌 } ∈ 𝑆 ) |
50 |
18 21 41 49
|
mbfmcnvima |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) → ( ◡ 𝐺 “ { 𝑌 } ) ∈ dom 𝑀 ) |
51 |
|
inelsiga |
⊢ ( ( dom 𝑀 ∈ ∪ ran sigAlgebra ∧ ( ◡ 𝐹 “ { 𝑋 } ) ∈ dom 𝑀 ∧ ( ◡ 𝐺 “ { 𝑌 } ) ∈ dom 𝑀 ) → ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ∈ dom 𝑀 ) |
52 |
18 39 50 51
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) → ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ∈ dom 𝑀 ) |
53 |
|
measvxrge0 |
⊢ ( ( 𝑀 ∈ ( measures ‘ dom 𝑀 ) ∧ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ∈ dom 𝑀 ) → ( 𝑀 ‘ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ) ∈ ( 0 [,] +∞ ) ) |
54 |
15 52 53
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) → ( 𝑀 ‘ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ) ∈ ( 0 [,] +∞ ) ) |
55 |
|
elxrge0 |
⊢ ( ( 𝑀 ‘ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝑀 ‘ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ) ∈ ℝ* ∧ 0 ≤ ( 𝑀 ‘ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ) ) ) |
56 |
55
|
simplbi |
⊢ ( ( 𝑀 ‘ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ) ∈ ( 0 [,] +∞ ) → ( 𝑀 ‘ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ) ∈ ℝ* ) |
57 |
54 56
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) → ( 𝑀 ‘ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ) ∈ ℝ* ) |
58 |
57
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ ( 𝑋 ≠ 0 ∨ 𝑌 ≠ 0 ) ) → ( 𝑀 ‘ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ) ∈ ℝ* ) |
59 |
|
0re |
⊢ 0 ∈ ℝ |
60 |
59
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ ( 𝑋 ≠ 0 ∨ 𝑌 ≠ 0 ) ) → 0 ∈ ℝ ) |
61 |
55
|
simprbi |
⊢ ( ( 𝑀 ‘ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ) ∈ ( 0 [,] +∞ ) → 0 ≤ ( 𝑀 ‘ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ) ) |
62 |
54 61
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) → 0 ≤ ( 𝑀 ‘ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ) ) |
63 |
62
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ ( 𝑋 ≠ 0 ∨ 𝑌 ≠ 0 ) ) → 0 ≤ ( 𝑀 ‘ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ) ) |
64 |
57
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ 𝑋 ≠ 0 ) → ( 𝑀 ‘ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ) ∈ ℝ* ) |
65 |
15
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ 𝑋 ≠ 0 ) → 𝑀 ∈ ( measures ‘ dom 𝑀 ) ) |
66 |
39
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ 𝑋 ≠ 0 ) → ( ◡ 𝐹 “ { 𝑋 } ) ∈ dom 𝑀 ) |
67 |
|
measvxrge0 |
⊢ ( ( 𝑀 ∈ ( measures ‘ dom 𝑀 ) ∧ ( ◡ 𝐹 “ { 𝑋 } ) ∈ dom 𝑀 ) → ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑋 } ) ) ∈ ( 0 [,] +∞ ) ) |
68 |
65 66 67
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ 𝑋 ≠ 0 ) → ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑋 } ) ) ∈ ( 0 [,] +∞ ) ) |
69 |
|
elxrge0 |
⊢ ( ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑋 } ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑋 } ) ) ∈ ℝ* ∧ 0 ≤ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑋 } ) ) ) ) |
70 |
69
|
simplbi |
⊢ ( ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑋 } ) ) ∈ ( 0 [,] +∞ ) → ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑋 } ) ) ∈ ℝ* ) |
71 |
68 70
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ 𝑋 ≠ 0 ) → ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑋 } ) ) ∈ ℝ* ) |
72 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
73 |
72
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ 𝑋 ≠ 0 ) → +∞ ∈ ℝ* ) |
74 |
52
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ 𝑋 ≠ 0 ) → ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ∈ dom 𝑀 ) |
75 |
|
inss1 |
⊢ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ⊆ ( ◡ 𝐹 “ { 𝑋 } ) |
76 |
75
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ 𝑋 ≠ 0 ) → ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ⊆ ( ◡ 𝐹 “ { 𝑋 } ) ) |
77 |
65 74 66 76
|
measssd |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ 𝑋 ≠ 0 ) → ( 𝑀 ‘ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ) ≤ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑋 } ) ) ) |
78 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ 𝑋 ≠ 0 ) → 𝜑 ) |
79 |
33
|
anim1i |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ 𝑋 ≠ 0 ) → ( 𝑋 ∈ ran 𝐹 ∧ 𝑋 ≠ 0 ) ) |
80 |
|
eldifsn |
⊢ ( 𝑋 ∈ ( ran 𝐹 ∖ { 0 } ) ↔ ( 𝑋 ∈ ran 𝐹 ∧ 𝑋 ≠ 0 ) ) |
81 |
79 80
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ 𝑋 ≠ 0 ) → 𝑋 ∈ ( ran 𝐹 ∖ { 0 } ) ) |
82 |
1 2 3 4 5 6 7 8 9
|
sibfima |
⊢ ( ( 𝜑 ∧ 𝑋 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑋 } ) ) ∈ ( 0 [,) +∞ ) ) |
83 |
78 81 82
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ 𝑋 ≠ 0 ) → ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑋 } ) ) ∈ ( 0 [,) +∞ ) ) |
84 |
|
elico2 |
⊢ ( ( 0 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑋 } ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑋 } ) ) ∈ ℝ ∧ 0 ≤ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑋 } ) ) ∧ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑋 } ) ) < +∞ ) ) ) |
85 |
59 72 84
|
mp2an |
⊢ ( ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑋 } ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑋 } ) ) ∈ ℝ ∧ 0 ≤ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑋 } ) ) ∧ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑋 } ) ) < +∞ ) ) |
86 |
85
|
simp3bi |
⊢ ( ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑋 } ) ) ∈ ( 0 [,) +∞ ) → ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑋 } ) ) < +∞ ) |
87 |
83 86
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ 𝑋 ≠ 0 ) → ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑋 } ) ) < +∞ ) |
88 |
64 71 73 77 87
|
xrlelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ 𝑋 ≠ 0 ) → ( 𝑀 ‘ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ) < +∞ ) |
89 |
57
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ 𝑌 ≠ 0 ) → ( 𝑀 ‘ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ) ∈ ℝ* ) |
90 |
15
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ 𝑌 ≠ 0 ) → 𝑀 ∈ ( measures ‘ dom 𝑀 ) ) |
91 |
50
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ 𝑌 ≠ 0 ) → ( ◡ 𝐺 “ { 𝑌 } ) ∈ dom 𝑀 ) |
92 |
|
measvxrge0 |
⊢ ( ( 𝑀 ∈ ( measures ‘ dom 𝑀 ) ∧ ( ◡ 𝐺 “ { 𝑌 } ) ∈ dom 𝑀 ) → ( 𝑀 ‘ ( ◡ 𝐺 “ { 𝑌 } ) ) ∈ ( 0 [,] +∞ ) ) |
93 |
90 91 92
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ 𝑌 ≠ 0 ) → ( 𝑀 ‘ ( ◡ 𝐺 “ { 𝑌 } ) ) ∈ ( 0 [,] +∞ ) ) |
94 |
|
elxrge0 |
⊢ ( ( 𝑀 ‘ ( ◡ 𝐺 “ { 𝑌 } ) ) ∈ ( 0 [,] +∞ ) ↔ ( ( 𝑀 ‘ ( ◡ 𝐺 “ { 𝑌 } ) ) ∈ ℝ* ∧ 0 ≤ ( 𝑀 ‘ ( ◡ 𝐺 “ { 𝑌 } ) ) ) ) |
95 |
94
|
simplbi |
⊢ ( ( 𝑀 ‘ ( ◡ 𝐺 “ { 𝑌 } ) ) ∈ ( 0 [,] +∞ ) → ( 𝑀 ‘ ( ◡ 𝐺 “ { 𝑌 } ) ) ∈ ℝ* ) |
96 |
93 95
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ 𝑌 ≠ 0 ) → ( 𝑀 ‘ ( ◡ 𝐺 “ { 𝑌 } ) ) ∈ ℝ* ) |
97 |
72
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ 𝑌 ≠ 0 ) → +∞ ∈ ℝ* ) |
98 |
52
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ 𝑌 ≠ 0 ) → ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ∈ dom 𝑀 ) |
99 |
|
inss2 |
⊢ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ⊆ ( ◡ 𝐺 “ { 𝑌 } ) |
100 |
99
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ 𝑌 ≠ 0 ) → ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ⊆ ( ◡ 𝐺 “ { 𝑌 } ) ) |
101 |
90 98 91 100
|
measssd |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ 𝑌 ≠ 0 ) → ( 𝑀 ‘ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ) ≤ ( 𝑀 ‘ ( ◡ 𝐺 “ { 𝑌 } ) ) ) |
102 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ 𝑌 ≠ 0 ) → 𝜑 ) |
103 |
45
|
anim1i |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ 𝑌 ≠ 0 ) → ( 𝑌 ∈ ran 𝐺 ∧ 𝑌 ≠ 0 ) ) |
104 |
|
eldifsn |
⊢ ( 𝑌 ∈ ( ran 𝐺 ∖ { 0 } ) ↔ ( 𝑌 ∈ ran 𝐺 ∧ 𝑌 ≠ 0 ) ) |
105 |
103 104
|
sylibr |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ 𝑌 ≠ 0 ) → 𝑌 ∈ ( ran 𝐺 ∖ { 0 } ) ) |
106 |
1 2 3 4 5 6 7 8 10
|
sibfima |
⊢ ( ( 𝜑 ∧ 𝑌 ∈ ( ran 𝐺 ∖ { 0 } ) ) → ( 𝑀 ‘ ( ◡ 𝐺 “ { 𝑌 } ) ) ∈ ( 0 [,) +∞ ) ) |
107 |
102 105 106
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ 𝑌 ≠ 0 ) → ( 𝑀 ‘ ( ◡ 𝐺 “ { 𝑌 } ) ) ∈ ( 0 [,) +∞ ) ) |
108 |
|
elico2 |
⊢ ( ( 0 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( ( 𝑀 ‘ ( ◡ 𝐺 “ { 𝑌 } ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝑀 ‘ ( ◡ 𝐺 “ { 𝑌 } ) ) ∈ ℝ ∧ 0 ≤ ( 𝑀 ‘ ( ◡ 𝐺 “ { 𝑌 } ) ) ∧ ( 𝑀 ‘ ( ◡ 𝐺 “ { 𝑌 } ) ) < +∞ ) ) ) |
109 |
59 72 108
|
mp2an |
⊢ ( ( 𝑀 ‘ ( ◡ 𝐺 “ { 𝑌 } ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝑀 ‘ ( ◡ 𝐺 “ { 𝑌 } ) ) ∈ ℝ ∧ 0 ≤ ( 𝑀 ‘ ( ◡ 𝐺 “ { 𝑌 } ) ) ∧ ( 𝑀 ‘ ( ◡ 𝐺 “ { 𝑌 } ) ) < +∞ ) ) |
110 |
109
|
simp3bi |
⊢ ( ( 𝑀 ‘ ( ◡ 𝐺 “ { 𝑌 } ) ) ∈ ( 0 [,) +∞ ) → ( 𝑀 ‘ ( ◡ 𝐺 “ { 𝑌 } ) ) < +∞ ) |
111 |
107 110
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ 𝑌 ≠ 0 ) → ( 𝑀 ‘ ( ◡ 𝐺 “ { 𝑌 } ) ) < +∞ ) |
112 |
89 96 97 101 111
|
xrlelttrd |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ 𝑌 ≠ 0 ) → ( 𝑀 ‘ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ) < +∞ ) |
113 |
88 112
|
jaodan |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ ( 𝑋 ≠ 0 ∨ 𝑌 ≠ 0 ) ) → ( 𝑀 ‘ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ) < +∞ ) |
114 |
|
xrre3 |
⊢ ( ( ( ( 𝑀 ‘ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ) ∈ ℝ* ∧ 0 ∈ ℝ ) ∧ ( 0 ≤ ( 𝑀 ‘ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ) ∧ ( 𝑀 ‘ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ) < +∞ ) ) → ( 𝑀 ‘ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ) ∈ ℝ ) |
115 |
58 60 63 113 114
|
syl22anc |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ ( 𝑋 ≠ 0 ∨ 𝑌 ≠ 0 ) ) → ( 𝑀 ‘ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ) ∈ ℝ ) |
116 |
|
elico2 |
⊢ ( ( 0 ∈ ℝ ∧ +∞ ∈ ℝ* ) → ( ( 𝑀 ‘ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝑀 ‘ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ) ∈ ℝ ∧ 0 ≤ ( 𝑀 ‘ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ) ∧ ( 𝑀 ‘ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ) < +∞ ) ) ) |
117 |
59 72 116
|
mp2an |
⊢ ( ( 𝑀 ‘ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝑀 ‘ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ) ∈ ℝ ∧ 0 ≤ ( 𝑀 ‘ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ) ∧ ( 𝑀 ‘ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ) < +∞ ) ) |
118 |
115 63 113 117
|
syl3anbrc |
⊢ ( ( ( 𝜑 ∧ 𝑋 ∈ ran 𝐹 ∧ 𝑌 ∈ ran 𝐺 ) ∧ ( 𝑋 ≠ 0 ∨ 𝑌 ≠ 0 ) ) → ( 𝑀 ‘ ( ( ◡ 𝐹 “ { 𝑋 } ) ∩ ( ◡ 𝐺 “ { 𝑌 } ) ) ) ∈ ( 0 [,) +∞ ) ) |