| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sitgval.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
| 2 |
|
sitgval.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) |
| 3 |
|
sitgval.s |
⊢ 𝑆 = ( sigaGen ‘ 𝐽 ) |
| 4 |
|
sitgval.0 |
⊢ 0 = ( 0g ‘ 𝑊 ) |
| 5 |
|
sitgval.x |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
| 6 |
|
sitgval.h |
⊢ 𝐻 = ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) |
| 7 |
|
sitgval.1 |
⊢ ( 𝜑 → 𝑊 ∈ 𝑉 ) |
| 8 |
|
sitgval.2 |
⊢ ( 𝜑 → 𝑀 ∈ ∪ ran measures ) |
| 9 |
|
sibfmbl.1 |
⊢ ( 𝜑 → 𝐹 ∈ dom ( 𝑊 sitg 𝑀 ) ) |
| 10 |
|
sibfof.c |
⊢ 𝐶 = ( Base ‘ 𝐾 ) |
| 11 |
|
sibfof.0 |
⊢ ( 𝜑 → 𝑊 ∈ TopSp ) |
| 12 |
|
sibfof.1 |
⊢ ( 𝜑 → + : ( 𝐵 × 𝐵 ) ⟶ 𝐶 ) |
| 13 |
|
sibfof.2 |
⊢ ( 𝜑 → 𝐺 ∈ dom ( 𝑊 sitg 𝑀 ) ) |
| 14 |
|
sibfof.3 |
⊢ ( 𝜑 → 𝐾 ∈ TopSp ) |
| 15 |
|
sibfof.4 |
⊢ ( 𝜑 → 𝐽 ∈ Fre ) |
| 16 |
|
sibfof.5 |
⊢ ( 𝜑 → ( 0 + 0 ) = ( 0g ‘ 𝐾 ) ) |
| 17 |
1 2
|
tpsuni |
⊢ ( 𝑊 ∈ TopSp → 𝐵 = ∪ 𝐽 ) |
| 18 |
11 17
|
syl |
⊢ ( 𝜑 → 𝐵 = ∪ 𝐽 ) |
| 19 |
18
|
sqxpeqd |
⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) = ( ∪ 𝐽 × ∪ 𝐽 ) ) |
| 20 |
19
|
feq2d |
⊢ ( 𝜑 → ( + : ( 𝐵 × 𝐵 ) ⟶ 𝐶 ↔ + : ( ∪ 𝐽 × ∪ 𝐽 ) ⟶ 𝐶 ) ) |
| 21 |
12 20
|
mpbid |
⊢ ( 𝜑 → + : ( ∪ 𝐽 × ∪ 𝐽 ) ⟶ 𝐶 ) |
| 22 |
21
|
fovcdmda |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ∪ 𝐽 ∧ 𝑥 ∈ ∪ 𝐽 ) ) → ( 𝑧 + 𝑥 ) ∈ 𝐶 ) |
| 23 |
1 2 3 4 5 6 7 8 9
|
sibff |
⊢ ( 𝜑 → 𝐹 : ∪ dom 𝑀 ⟶ ∪ 𝐽 ) |
| 24 |
1 2 3 4 5 6 7 8 13
|
sibff |
⊢ ( 𝜑 → 𝐺 : ∪ dom 𝑀 ⟶ ∪ 𝐽 ) |
| 25 |
|
dmexg |
⊢ ( 𝑀 ∈ ∪ ran measures → dom 𝑀 ∈ V ) |
| 26 |
|
uniexg |
⊢ ( dom 𝑀 ∈ V → ∪ dom 𝑀 ∈ V ) |
| 27 |
8 25 26
|
3syl |
⊢ ( 𝜑 → ∪ dom 𝑀 ∈ V ) |
| 28 |
|
inidm |
⊢ ( ∪ dom 𝑀 ∩ ∪ dom 𝑀 ) = ∪ dom 𝑀 |
| 29 |
22 23 24 27 27 28
|
off |
⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) : ∪ dom 𝑀 ⟶ 𝐶 ) |
| 30 |
|
eqid |
⊢ ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐾 ) |
| 31 |
10 30
|
tpsuni |
⊢ ( 𝐾 ∈ TopSp → 𝐶 = ∪ ( TopOpen ‘ 𝐾 ) ) |
| 32 |
14 31
|
syl |
⊢ ( 𝜑 → 𝐶 = ∪ ( TopOpen ‘ 𝐾 ) ) |
| 33 |
|
fvex |
⊢ ( TopOpen ‘ 𝐾 ) ∈ V |
| 34 |
|
unisg |
⊢ ( ( TopOpen ‘ 𝐾 ) ∈ V → ∪ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) = ∪ ( TopOpen ‘ 𝐾 ) ) |
| 35 |
33 34
|
ax-mp |
⊢ ∪ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) = ∪ ( TopOpen ‘ 𝐾 ) |
| 36 |
32 35
|
eqtr4di |
⊢ ( 𝜑 → 𝐶 = ∪ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) |
| 37 |
36
|
feq3d |
⊢ ( 𝜑 → ( ( 𝐹 ∘f + 𝐺 ) : ∪ dom 𝑀 ⟶ 𝐶 ↔ ( 𝐹 ∘f + 𝐺 ) : ∪ dom 𝑀 ⟶ ∪ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) ) |
| 38 |
29 37
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) : ∪ dom 𝑀 ⟶ ∪ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) |
| 39 |
33
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ 𝐾 ) ∈ V ) |
| 40 |
39
|
sgsiga |
⊢ ( 𝜑 → ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ∈ ∪ ran sigAlgebra ) |
| 41 |
40
|
uniexd |
⊢ ( 𝜑 → ∪ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ∈ V ) |
| 42 |
41 27
|
elmapd |
⊢ ( 𝜑 → ( ( 𝐹 ∘f + 𝐺 ) ∈ ( ∪ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ↑m ∪ dom 𝑀 ) ↔ ( 𝐹 ∘f + 𝐺 ) : ∪ dom 𝑀 ⟶ ∪ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) ) |
| 43 |
38 42
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) ∈ ( ∪ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ↑m ∪ dom 𝑀 ) ) |
| 44 |
|
inundif |
⊢ ( ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ∪ ( 𝑏 ∖ ran ( 𝐹 ∘f + 𝐺 ) ) ) = 𝑏 |
| 45 |
44
|
imaeq2i |
⊢ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ∪ ( 𝑏 ∖ ran ( 𝐹 ∘f + 𝐺 ) ) ) ) = ( ◡ ( 𝐹 ∘f + 𝐺 ) “ 𝑏 ) |
| 46 |
|
ffun |
⊢ ( ( 𝐹 ∘f + 𝐺 ) : ∪ dom 𝑀 ⟶ 𝐶 → Fun ( 𝐹 ∘f + 𝐺 ) ) |
| 47 |
|
unpreima |
⊢ ( Fun ( 𝐹 ∘f + 𝐺 ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ∪ ( 𝑏 ∖ ran ( 𝐹 ∘f + 𝐺 ) ) ) ) = ( ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ) ∪ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹 ∘f + 𝐺 ) ) ) ) ) |
| 48 |
29 46 47
|
3syl |
⊢ ( 𝜑 → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ∪ ( 𝑏 ∖ ran ( 𝐹 ∘f + 𝐺 ) ) ) ) = ( ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ) ∪ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹 ∘f + 𝐺 ) ) ) ) ) |
| 49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ∪ ( 𝑏 ∖ ran ( 𝐹 ∘f + 𝐺 ) ) ) ) = ( ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ) ∪ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹 ∘f + 𝐺 ) ) ) ) ) |
| 50 |
45 49
|
eqtr3id |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ 𝑏 ) = ( ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ) ∪ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹 ∘f + 𝐺 ) ) ) ) ) |
| 51 |
|
dmmeas |
⊢ ( 𝑀 ∈ ∪ ran measures → dom 𝑀 ∈ ∪ ran sigAlgebra ) |
| 52 |
8 51
|
syl |
⊢ ( 𝜑 → dom 𝑀 ∈ ∪ ran sigAlgebra ) |
| 53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) → dom 𝑀 ∈ ∪ ran sigAlgebra ) |
| 54 |
|
imaiun |
⊢ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ∪ 𝑧 ∈ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) { 𝑧 } ) = ∪ 𝑧 ∈ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) |
| 55 |
|
iunid |
⊢ ∪ 𝑧 ∈ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) { 𝑧 } = ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) |
| 56 |
55
|
imaeq2i |
⊢ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ∪ 𝑧 ∈ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) { 𝑧 } ) = ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ) |
| 57 |
54 56
|
eqtr3i |
⊢ ∪ 𝑧 ∈ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) = ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ) |
| 58 |
|
inss2 |
⊢ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ⊆ ran ( 𝐹 ∘f + 𝐺 ) |
| 59 |
18
|
feq3d |
⊢ ( 𝜑 → ( 𝐹 : ∪ dom 𝑀 ⟶ 𝐵 ↔ 𝐹 : ∪ dom 𝑀 ⟶ ∪ 𝐽 ) ) |
| 60 |
23 59
|
mpbird |
⊢ ( 𝜑 → 𝐹 : ∪ dom 𝑀 ⟶ 𝐵 ) |
| 61 |
18
|
feq3d |
⊢ ( 𝜑 → ( 𝐺 : ∪ dom 𝑀 ⟶ 𝐵 ↔ 𝐺 : ∪ dom 𝑀 ⟶ ∪ 𝐽 ) ) |
| 62 |
24 61
|
mpbird |
⊢ ( 𝜑 → 𝐺 : ∪ dom 𝑀 ⟶ 𝐵 ) |
| 63 |
12
|
ffnd |
⊢ ( 𝜑 → + Fn ( 𝐵 × 𝐵 ) ) |
| 64 |
60 62 27 63
|
ofpreima2 |
⊢ ( 𝜑 → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) = ∪ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) |
| 65 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝐹 ∘f + 𝐺 ) ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) = ∪ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) |
| 66 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝐹 ∘f + 𝐺 ) ) → dom 𝑀 ∈ ∪ ran sigAlgebra ) |
| 67 |
52
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝐹 ∘f + 𝐺 ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → dom 𝑀 ∈ ∪ ran sigAlgebra ) |
| 68 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝐹 ∘f + 𝐺 ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 𝜑 ) |
| 69 |
|
inss1 |
⊢ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ⊆ ( ◡ + “ { 𝑧 } ) |
| 70 |
|
cnvimass |
⊢ ( ◡ + “ { 𝑧 } ) ⊆ dom + |
| 71 |
70 12
|
fssdm |
⊢ ( 𝜑 → ( ◡ + “ { 𝑧 } ) ⊆ ( 𝐵 × 𝐵 ) ) |
| 72 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝐹 ∘f + 𝐺 ) ) → ( ◡ + “ { 𝑧 } ) ⊆ ( 𝐵 × 𝐵 ) ) |
| 73 |
69 72
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝐹 ∘f + 𝐺 ) ) → ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ⊆ ( 𝐵 × 𝐵 ) ) |
| 74 |
73
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝐹 ∘f + 𝐺 ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 𝑝 ∈ ( 𝐵 × 𝐵 ) ) |
| 75 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → dom 𝑀 ∈ ∪ ran sigAlgebra ) |
| 76 |
15
|
sgsiga |
⊢ ( 𝜑 → ( sigaGen ‘ 𝐽 ) ∈ ∪ ran sigAlgebra ) |
| 77 |
3 76
|
eqeltrid |
⊢ ( 𝜑 → 𝑆 ∈ ∪ ran sigAlgebra ) |
| 78 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
| 79 |
1 2 3 4 5 6 7 8 9
|
sibfmbl |
⊢ ( 𝜑 → 𝐹 ∈ ( dom 𝑀 MblFnM 𝑆 ) ) |
| 80 |
79
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → 𝐹 ∈ ( dom 𝑀 MblFnM 𝑆 ) ) |
| 81 |
2
|
tpstop |
⊢ ( 𝑊 ∈ TopSp → 𝐽 ∈ Top ) |
| 82 |
|
cldssbrsiga |
⊢ ( 𝐽 ∈ Top → ( Clsd ‘ 𝐽 ) ⊆ ( sigaGen ‘ 𝐽 ) ) |
| 83 |
11 81 82
|
3syl |
⊢ ( 𝜑 → ( Clsd ‘ 𝐽 ) ⊆ ( sigaGen ‘ 𝐽 ) ) |
| 84 |
83
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → ( Clsd ‘ 𝐽 ) ⊆ ( sigaGen ‘ 𝐽 ) ) |
| 85 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → 𝐽 ∈ Fre ) |
| 86 |
|
xp1st |
⊢ ( 𝑝 ∈ ( 𝐵 × 𝐵 ) → ( 1st ‘ 𝑝 ) ∈ 𝐵 ) |
| 87 |
86
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → ( 1st ‘ 𝑝 ) ∈ 𝐵 ) |
| 88 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → 𝐵 = ∪ 𝐽 ) |
| 89 |
87 88
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → ( 1st ‘ 𝑝 ) ∈ ∪ 𝐽 ) |
| 90 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
| 91 |
90
|
t1sncld |
⊢ ( ( 𝐽 ∈ Fre ∧ ( 1st ‘ 𝑝 ) ∈ ∪ 𝐽 ) → { ( 1st ‘ 𝑝 ) } ∈ ( Clsd ‘ 𝐽 ) ) |
| 92 |
85 89 91
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → { ( 1st ‘ 𝑝 ) } ∈ ( Clsd ‘ 𝐽 ) ) |
| 93 |
84 92
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → { ( 1st ‘ 𝑝 ) } ∈ ( sigaGen ‘ 𝐽 ) ) |
| 94 |
93 3
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → { ( 1st ‘ 𝑝 ) } ∈ 𝑆 ) |
| 95 |
75 78 80 94
|
mbfmcnvima |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∈ dom 𝑀 ) |
| 96 |
68 74 95
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝐹 ∘f + 𝐺 ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∈ dom 𝑀 ) |
| 97 |
1 2 3 4 5 6 7 8 13
|
sibfmbl |
⊢ ( 𝜑 → 𝐺 ∈ ( dom 𝑀 MblFnM 𝑆 ) ) |
| 98 |
97
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → 𝐺 ∈ ( dom 𝑀 MblFnM 𝑆 ) ) |
| 99 |
|
xp2nd |
⊢ ( 𝑝 ∈ ( 𝐵 × 𝐵 ) → ( 2nd ‘ 𝑝 ) ∈ 𝐵 ) |
| 100 |
99
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → ( 2nd ‘ 𝑝 ) ∈ 𝐵 ) |
| 101 |
100 88
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → ( 2nd ‘ 𝑝 ) ∈ ∪ 𝐽 ) |
| 102 |
90
|
t1sncld |
⊢ ( ( 𝐽 ∈ Fre ∧ ( 2nd ‘ 𝑝 ) ∈ ∪ 𝐽 ) → { ( 2nd ‘ 𝑝 ) } ∈ ( Clsd ‘ 𝐽 ) ) |
| 103 |
85 101 102
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → { ( 2nd ‘ 𝑝 ) } ∈ ( Clsd ‘ 𝐽 ) ) |
| 104 |
84 103
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → { ( 2nd ‘ 𝑝 ) } ∈ ( sigaGen ‘ 𝐽 ) ) |
| 105 |
104 3
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → { ( 2nd ‘ 𝑝 ) } ∈ 𝑆 ) |
| 106 |
75 78 98 105
|
mbfmcnvima |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ∈ dom 𝑀 ) |
| 107 |
68 74 106
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝐹 ∘f + 𝐺 ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ∈ dom 𝑀 ) |
| 108 |
|
inelsiga |
⊢ ( ( dom 𝑀 ∈ ∪ ran sigAlgebra ∧ ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∈ dom 𝑀 ∧ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ∈ dom 𝑀 ) → ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ∈ dom 𝑀 ) |
| 109 |
67 96 107 108
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝐹 ∘f + 𝐺 ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ∈ dom 𝑀 ) |
| 110 |
109
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝐹 ∘f + 𝐺 ) ) → ∀ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ∈ dom 𝑀 ) |
| 111 |
1 2 3 4 5 6 7 8 9
|
sibfrn |
⊢ ( 𝜑 → ran 𝐹 ∈ Fin ) |
| 112 |
1 2 3 4 5 6 7 8 13
|
sibfrn |
⊢ ( 𝜑 → ran 𝐺 ∈ Fin ) |
| 113 |
|
xpfi |
⊢ ( ( ran 𝐹 ∈ Fin ∧ ran 𝐺 ∈ Fin ) → ( ran 𝐹 × ran 𝐺 ) ∈ Fin ) |
| 114 |
111 112 113
|
syl2anc |
⊢ ( 𝜑 → ( ran 𝐹 × ran 𝐺 ) ∈ Fin ) |
| 115 |
|
inss2 |
⊢ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ⊆ ( ran 𝐹 × ran 𝐺 ) |
| 116 |
|
ssdomg |
⊢ ( ( ran 𝐹 × ran 𝐺 ) ∈ Fin → ( ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ⊆ ( ran 𝐹 × ran 𝐺 ) → ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ≼ ( ran 𝐹 × ran 𝐺 ) ) ) |
| 117 |
114 115 116
|
mpisyl |
⊢ ( 𝜑 → ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ≼ ( ran 𝐹 × ran 𝐺 ) ) |
| 118 |
|
isfinite |
⊢ ( ( ran 𝐹 × ran 𝐺 ) ∈ Fin ↔ ( ran 𝐹 × ran 𝐺 ) ≺ ω ) |
| 119 |
118
|
biimpi |
⊢ ( ( ran 𝐹 × ran 𝐺 ) ∈ Fin → ( ran 𝐹 × ran 𝐺 ) ≺ ω ) |
| 120 |
|
sdomdom |
⊢ ( ( ran 𝐹 × ran 𝐺 ) ≺ ω → ( ran 𝐹 × ran 𝐺 ) ≼ ω ) |
| 121 |
114 119 120
|
3syl |
⊢ ( 𝜑 → ( ran 𝐹 × ran 𝐺 ) ≼ ω ) |
| 122 |
|
domtr |
⊢ ( ( ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ≼ ( ran 𝐹 × ran 𝐺 ) ∧ ( ran 𝐹 × ran 𝐺 ) ≼ ω ) → ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ≼ ω ) |
| 123 |
117 121 122
|
syl2anc |
⊢ ( 𝜑 → ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ≼ ω ) |
| 124 |
123
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝐹 ∘f + 𝐺 ) ) → ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ≼ ω ) |
| 125 |
|
nfcv |
⊢ Ⅎ 𝑝 ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) |
| 126 |
125
|
sigaclcuni |
⊢ ( ( dom 𝑀 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ∈ dom 𝑀 ∧ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ≼ ω ) → ∪ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ∈ dom 𝑀 ) |
| 127 |
66 110 124 126
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝐹 ∘f + 𝐺 ) ) → ∪ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ∈ dom 𝑀 ) |
| 128 |
65 127
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝐹 ∘f + 𝐺 ) ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ∈ dom 𝑀 ) |
| 129 |
128
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ran ( 𝐹 ∘f + 𝐺 ) ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ∈ dom 𝑀 ) |
| 130 |
|
ssralv |
⊢ ( ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ⊆ ran ( 𝐹 ∘f + 𝐺 ) → ( ∀ 𝑧 ∈ ran ( 𝐹 ∘f + 𝐺 ) ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ∈ dom 𝑀 → ∀ 𝑧 ∈ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ∈ dom 𝑀 ) ) |
| 131 |
58 129 130
|
mpsyl |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ∈ dom 𝑀 ) |
| 132 |
131
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) → ∀ 𝑧 ∈ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ∈ dom 𝑀 ) |
| 133 |
12
|
ffund |
⊢ ( 𝜑 → Fun + ) |
| 134 |
|
imafi |
⊢ ( ( Fun + ∧ ( ran 𝐹 × ran 𝐺 ) ∈ Fin ) → ( + “ ( ran 𝐹 × ran 𝐺 ) ) ∈ Fin ) |
| 135 |
133 114 134
|
syl2anc |
⊢ ( 𝜑 → ( + “ ( ran 𝐹 × ran 𝐺 ) ) ∈ Fin ) |
| 136 |
23 24 21 27
|
ofrn2 |
⊢ ( 𝜑 → ran ( 𝐹 ∘f + 𝐺 ) ⊆ ( + “ ( ran 𝐹 × ran 𝐺 ) ) ) |
| 137 |
|
ssfi |
⊢ ( ( ( + “ ( ran 𝐹 × ran 𝐺 ) ) ∈ Fin ∧ ran ( 𝐹 ∘f + 𝐺 ) ⊆ ( + “ ( ran 𝐹 × ran 𝐺 ) ) ) → ran ( 𝐹 ∘f + 𝐺 ) ∈ Fin ) |
| 138 |
135 136 137
|
syl2anc |
⊢ ( 𝜑 → ran ( 𝐹 ∘f + 𝐺 ) ∈ Fin ) |
| 139 |
|
ssdomg |
⊢ ( ran ( 𝐹 ∘f + 𝐺 ) ∈ Fin → ( ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ⊆ ran ( 𝐹 ∘f + 𝐺 ) → ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ≼ ran ( 𝐹 ∘f + 𝐺 ) ) ) |
| 140 |
138 58 139
|
mpisyl |
⊢ ( 𝜑 → ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ≼ ran ( 𝐹 ∘f + 𝐺 ) ) |
| 141 |
|
isfinite |
⊢ ( ran ( 𝐹 ∘f + 𝐺 ) ∈ Fin ↔ ran ( 𝐹 ∘f + 𝐺 ) ≺ ω ) |
| 142 |
138 141
|
sylib |
⊢ ( 𝜑 → ran ( 𝐹 ∘f + 𝐺 ) ≺ ω ) |
| 143 |
|
sdomdom |
⊢ ( ran ( 𝐹 ∘f + 𝐺 ) ≺ ω → ran ( 𝐹 ∘f + 𝐺 ) ≼ ω ) |
| 144 |
142 143
|
syl |
⊢ ( 𝜑 → ran ( 𝐹 ∘f + 𝐺 ) ≼ ω ) |
| 145 |
|
domtr |
⊢ ( ( ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ≼ ran ( 𝐹 ∘f + 𝐺 ) ∧ ran ( 𝐹 ∘f + 𝐺 ) ≼ ω ) → ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ≼ ω ) |
| 146 |
140 144 145
|
syl2anc |
⊢ ( 𝜑 → ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ≼ ω ) |
| 147 |
146
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) → ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ≼ ω ) |
| 148 |
|
nfcv |
⊢ Ⅎ 𝑧 ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) |
| 149 |
148
|
sigaclcuni |
⊢ ( ( dom 𝑀 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑧 ∈ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ∈ dom 𝑀 ∧ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ≼ ω ) → ∪ 𝑧 ∈ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ∈ dom 𝑀 ) |
| 150 |
53 132 147 149
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) → ∪ 𝑧 ∈ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ∈ dom 𝑀 ) |
| 151 |
57 150
|
eqeltrrid |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ) ∈ dom 𝑀 ) |
| 152 |
|
difpreima |
⊢ ( Fun ( 𝐹 ∘f + 𝐺 ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹 ∘f + 𝐺 ) ) ) = ( ( ◡ ( 𝐹 ∘f + 𝐺 ) “ 𝑏 ) ∖ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ran ( 𝐹 ∘f + 𝐺 ) ) ) ) |
| 153 |
29 46 152
|
3syl |
⊢ ( 𝜑 → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹 ∘f + 𝐺 ) ) ) = ( ( ◡ ( 𝐹 ∘f + 𝐺 ) “ 𝑏 ) ∖ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ran ( 𝐹 ∘f + 𝐺 ) ) ) ) |
| 154 |
|
cnvimarndm |
⊢ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ran ( 𝐹 ∘f + 𝐺 ) ) = dom ( 𝐹 ∘f + 𝐺 ) |
| 155 |
154
|
difeq2i |
⊢ ( ( ◡ ( 𝐹 ∘f + 𝐺 ) “ 𝑏 ) ∖ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ran ( 𝐹 ∘f + 𝐺 ) ) ) = ( ( ◡ ( 𝐹 ∘f + 𝐺 ) “ 𝑏 ) ∖ dom ( 𝐹 ∘f + 𝐺 ) ) |
| 156 |
|
cnvimass |
⊢ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ 𝑏 ) ⊆ dom ( 𝐹 ∘f + 𝐺 ) |
| 157 |
|
ssdif0 |
⊢ ( ( ◡ ( 𝐹 ∘f + 𝐺 ) “ 𝑏 ) ⊆ dom ( 𝐹 ∘f + 𝐺 ) ↔ ( ( ◡ ( 𝐹 ∘f + 𝐺 ) “ 𝑏 ) ∖ dom ( 𝐹 ∘f + 𝐺 ) ) = ∅ ) |
| 158 |
156 157
|
mpbi |
⊢ ( ( ◡ ( 𝐹 ∘f + 𝐺 ) “ 𝑏 ) ∖ dom ( 𝐹 ∘f + 𝐺 ) ) = ∅ |
| 159 |
155 158
|
eqtri |
⊢ ( ( ◡ ( 𝐹 ∘f + 𝐺 ) “ 𝑏 ) ∖ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ran ( 𝐹 ∘f + 𝐺 ) ) ) = ∅ |
| 160 |
153 159
|
eqtrdi |
⊢ ( 𝜑 → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹 ∘f + 𝐺 ) ) ) = ∅ ) |
| 161 |
|
0elsiga |
⊢ ( dom 𝑀 ∈ ∪ ran sigAlgebra → ∅ ∈ dom 𝑀 ) |
| 162 |
8 51 161
|
3syl |
⊢ ( 𝜑 → ∅ ∈ dom 𝑀 ) |
| 163 |
160 162
|
eqeltrd |
⊢ ( 𝜑 → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹 ∘f + 𝐺 ) ) ) ∈ dom 𝑀 ) |
| 164 |
163
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹 ∘f + 𝐺 ) ) ) ∈ dom 𝑀 ) |
| 165 |
|
unelsiga |
⊢ ( ( dom 𝑀 ∈ ∪ ran sigAlgebra ∧ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ) ∈ dom 𝑀 ∧ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹 ∘f + 𝐺 ) ) ) ∈ dom 𝑀 ) → ( ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ) ∪ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹 ∘f + 𝐺 ) ) ) ) ∈ dom 𝑀 ) |
| 166 |
53 151 164 165
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) → ( ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ) ∪ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹 ∘f + 𝐺 ) ) ) ) ∈ dom 𝑀 ) |
| 167 |
50 166
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ 𝑏 ) ∈ dom 𝑀 ) |
| 168 |
167
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ( ◡ ( 𝐹 ∘f + 𝐺 ) “ 𝑏 ) ∈ dom 𝑀 ) |
| 169 |
52 40
|
ismbfm |
⊢ ( 𝜑 → ( ( 𝐹 ∘f + 𝐺 ) ∈ ( dom 𝑀 MblFnM ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) ↔ ( ( 𝐹 ∘f + 𝐺 ) ∈ ( ∪ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ↑m ∪ dom 𝑀 ) ∧ ∀ 𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ( ◡ ( 𝐹 ∘f + 𝐺 ) “ 𝑏 ) ∈ dom 𝑀 ) ) ) |
| 170 |
43 168 169
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) ∈ ( dom 𝑀 MblFnM ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) ) |
| 171 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) = ∪ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) |
| 172 |
171
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) → ( 𝑀 ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ) = ( 𝑀 ‘ ∪ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ) |
| 173 |
|
measbasedom |
⊢ ( 𝑀 ∈ ∪ ran measures ↔ 𝑀 ∈ ( measures ‘ dom 𝑀 ) ) |
| 174 |
8 173
|
sylib |
⊢ ( 𝜑 → 𝑀 ∈ ( measures ‘ dom 𝑀 ) ) |
| 175 |
174
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) → 𝑀 ∈ ( measures ‘ dom 𝑀 ) ) |
| 176 |
|
eldifi |
⊢ ( 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) → 𝑧 ∈ ran ( 𝐹 ∘f + 𝐺 ) ) |
| 177 |
176 110
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) → ∀ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ∈ dom 𝑀 ) |
| 178 |
123
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) → ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ≼ ω ) |
| 179 |
|
sneq |
⊢ ( 𝑥 = ( 1st ‘ 𝑝 ) → { 𝑥 } = { ( 1st ‘ 𝑝 ) } ) |
| 180 |
179
|
imaeq2d |
⊢ ( 𝑥 = ( 1st ‘ 𝑝 ) → ( ◡ 𝐹 “ { 𝑥 } ) = ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ) |
| 181 |
|
sneq |
⊢ ( 𝑦 = ( 2nd ‘ 𝑝 ) → { 𝑦 } = { ( 2nd ‘ 𝑝 ) } ) |
| 182 |
181
|
imaeq2d |
⊢ ( 𝑦 = ( 2nd ‘ 𝑝 ) → ( ◡ 𝐺 “ { 𝑦 } ) = ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) |
| 183 |
23
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
| 184 |
|
sndisj |
⊢ Disj 𝑥 ∈ ran 𝐹 { 𝑥 } |
| 185 |
|
disjpreima |
⊢ ( ( Fun 𝐹 ∧ Disj 𝑥 ∈ ran 𝐹 { 𝑥 } ) → Disj 𝑥 ∈ ran 𝐹 ( ◡ 𝐹 “ { 𝑥 } ) ) |
| 186 |
183 184 185
|
sylancl |
⊢ ( 𝜑 → Disj 𝑥 ∈ ran 𝐹 ( ◡ 𝐹 “ { 𝑥 } ) ) |
| 187 |
24
|
ffund |
⊢ ( 𝜑 → Fun 𝐺 ) |
| 188 |
|
sndisj |
⊢ Disj 𝑦 ∈ ran 𝐺 { 𝑦 } |
| 189 |
|
disjpreima |
⊢ ( ( Fun 𝐺 ∧ Disj 𝑦 ∈ ran 𝐺 { 𝑦 } ) → Disj 𝑦 ∈ ran 𝐺 ( ◡ 𝐺 “ { 𝑦 } ) ) |
| 190 |
187 188 189
|
sylancl |
⊢ ( 𝜑 → Disj 𝑦 ∈ ran 𝐺 ( ◡ 𝐺 “ { 𝑦 } ) ) |
| 191 |
180 182 186 190
|
disjxpin |
⊢ ( 𝜑 → Disj 𝑝 ∈ ( ran 𝐹 × ran 𝐺 ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) |
| 192 |
|
disjss1 |
⊢ ( ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ⊆ ( ran 𝐹 × ran 𝐺 ) → ( Disj 𝑝 ∈ ( ran 𝐹 × ran 𝐺 ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) → Disj 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ) |
| 193 |
115 191 192
|
mpsyl |
⊢ ( 𝜑 → Disj 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) |
| 194 |
193
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) → Disj 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) |
| 195 |
|
measvuni |
⊢ ( ( 𝑀 ∈ ( measures ‘ dom 𝑀 ) ∧ ∀ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ∈ dom 𝑀 ∧ ( ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ≼ ω ∧ Disj 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ) → ( 𝑀 ‘ ∪ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) = Σ* 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( 𝑀 ‘ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ) |
| 196 |
175 177 178 194 195
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) → ( 𝑀 ‘ ∪ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) = Σ* 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( 𝑀 ‘ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ) |
| 197 |
|
ssfi |
⊢ ( ( ( ran 𝐹 × ran 𝐺 ) ∈ Fin ∧ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ⊆ ( ran 𝐹 × ran 𝐺 ) ) → ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ∈ Fin ) |
| 198 |
114 115 197
|
sylancl |
⊢ ( 𝜑 → ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ∈ Fin ) |
| 199 |
198
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) → ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ∈ Fin ) |
| 200 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 𝜑 ) |
| 201 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) |
| 202 |
115 201
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 𝑝 ∈ ( ran 𝐹 × ran 𝐺 ) ) |
| 203 |
|
xp1st |
⊢ ( 𝑝 ∈ ( ran 𝐹 × ran 𝐺 ) → ( 1st ‘ 𝑝 ) ∈ ran 𝐹 ) |
| 204 |
202 203
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( 1st ‘ 𝑝 ) ∈ ran 𝐹 ) |
| 205 |
|
xp2nd |
⊢ ( 𝑝 ∈ ( ran 𝐹 × ran 𝐺 ) → ( 2nd ‘ 𝑝 ) ∈ ran 𝐺 ) |
| 206 |
202 205
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( 2nd ‘ 𝑝 ) ∈ ran 𝐺 ) |
| 207 |
|
oveq12 |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) → ( 𝑥 + 𝑦 ) = ( 0 + 0 ) ) |
| 208 |
207 16
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 0 ∧ 𝑦 = 0 ) ) → ( 𝑥 + 𝑦 ) = ( 0g ‘ 𝐾 ) ) |
| 209 |
208
|
ex |
⊢ ( 𝜑 → ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) → ( 𝑥 + 𝑦 ) = ( 0g ‘ 𝐾 ) ) ) |
| 210 |
209
|
necon3ad |
⊢ ( 𝜑 → ( ( 𝑥 + 𝑦 ) ≠ ( 0g ‘ 𝐾 ) → ¬ ( 𝑥 = 0 ∧ 𝑦 = 0 ) ) ) |
| 211 |
|
neorian |
⊢ ( ( 𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ) ↔ ¬ ( 𝑥 = 0 ∧ 𝑦 = 0 ) ) |
| 212 |
210 211
|
imbitrrdi |
⊢ ( 𝜑 → ( ( 𝑥 + 𝑦 ) ≠ ( 0g ‘ 𝐾 ) → ( 𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ) ) ) |
| 213 |
212
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) ≠ ( 0g ‘ 𝐾 ) → ( 𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ) ) ) |
| 214 |
213
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ≠ ( 0g ‘ 𝐾 ) → ( 𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ) ) ) |
| 215 |
200 214
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ≠ ( 0g ‘ 𝐾 ) → ( 𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ) ) ) |
| 216 |
69
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) → ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ⊆ ( ◡ + “ { 𝑧 } ) ) |
| 217 |
216
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 𝑝 ∈ ( ◡ + “ { 𝑧 } ) ) |
| 218 |
|
fniniseg |
⊢ ( + Fn ( 𝐵 × 𝐵 ) → ( 𝑝 ∈ ( ◡ + “ { 𝑧 } ) ↔ ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ∧ ( + ‘ 𝑝 ) = 𝑧 ) ) ) |
| 219 |
200 63 218
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( 𝑝 ∈ ( ◡ + “ { 𝑧 } ) ↔ ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ∧ ( + ‘ 𝑝 ) = 𝑧 ) ) ) |
| 220 |
217 219
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ∧ ( + ‘ 𝑝 ) = 𝑧 ) ) |
| 221 |
|
simpr |
⊢ ( ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ∧ ( + ‘ 𝑝 ) = 𝑧 ) → ( + ‘ 𝑝 ) = 𝑧 ) |
| 222 |
|
1st2nd2 |
⊢ ( 𝑝 ∈ ( 𝐵 × 𝐵 ) → 𝑝 = 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 ) |
| 223 |
222
|
fveq2d |
⊢ ( 𝑝 ∈ ( 𝐵 × 𝐵 ) → ( + ‘ 𝑝 ) = ( + ‘ 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 ) ) |
| 224 |
|
df-ov |
⊢ ( ( 1st ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) = ( + ‘ 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 ) |
| 225 |
223 224
|
eqtr4di |
⊢ ( 𝑝 ∈ ( 𝐵 × 𝐵 ) → ( + ‘ 𝑝 ) = ( ( 1st ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) ) |
| 226 |
225
|
adantr |
⊢ ( ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ∧ ( + ‘ 𝑝 ) = 𝑧 ) → ( + ‘ 𝑝 ) = ( ( 1st ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) ) |
| 227 |
221 226
|
eqtr3d |
⊢ ( ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ∧ ( + ‘ 𝑝 ) = 𝑧 ) → 𝑧 = ( ( 1st ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) ) |
| 228 |
220 227
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 𝑧 = ( ( 1st ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) ) |
| 229 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) |
| 230 |
229
|
eldifbd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ¬ 𝑧 ∈ { ( 0g ‘ 𝐾 ) } ) |
| 231 |
|
velsn |
⊢ ( 𝑧 ∈ { ( 0g ‘ 𝐾 ) } ↔ 𝑧 = ( 0g ‘ 𝐾 ) ) |
| 232 |
231
|
necon3bbii |
⊢ ( ¬ 𝑧 ∈ { ( 0g ‘ 𝐾 ) } ↔ 𝑧 ≠ ( 0g ‘ 𝐾 ) ) |
| 233 |
230 232
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 𝑧 ≠ ( 0g ‘ 𝐾 ) ) |
| 234 |
228 233
|
eqnetrrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( ( 1st ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) ≠ ( 0g ‘ 𝐾 ) ) |
| 235 |
176 74
|
sylanl2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 𝑝 ∈ ( 𝐵 × 𝐵 ) ) |
| 236 |
235 86
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( 1st ‘ 𝑝 ) ∈ 𝐵 ) |
| 237 |
235 99
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( 2nd ‘ 𝑝 ) ∈ 𝐵 ) |
| 238 |
|
oveq1 |
⊢ ( 𝑥 = ( 1st ‘ 𝑝 ) → ( 𝑥 + 𝑦 ) = ( ( 1st ‘ 𝑝 ) + 𝑦 ) ) |
| 239 |
238
|
neeq1d |
⊢ ( 𝑥 = ( 1st ‘ 𝑝 ) → ( ( 𝑥 + 𝑦 ) ≠ ( 0g ‘ 𝐾 ) ↔ ( ( 1st ‘ 𝑝 ) + 𝑦 ) ≠ ( 0g ‘ 𝐾 ) ) ) |
| 240 |
|
neeq1 |
⊢ ( 𝑥 = ( 1st ‘ 𝑝 ) → ( 𝑥 ≠ 0 ↔ ( 1st ‘ 𝑝 ) ≠ 0 ) ) |
| 241 |
240
|
orbi1d |
⊢ ( 𝑥 = ( 1st ‘ 𝑝 ) → ( ( 𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ) ↔ ( ( 1st ‘ 𝑝 ) ≠ 0 ∨ 𝑦 ≠ 0 ) ) ) |
| 242 |
239 241
|
imbi12d |
⊢ ( 𝑥 = ( 1st ‘ 𝑝 ) → ( ( ( 𝑥 + 𝑦 ) ≠ ( 0g ‘ 𝐾 ) → ( 𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ) ) ↔ ( ( ( 1st ‘ 𝑝 ) + 𝑦 ) ≠ ( 0g ‘ 𝐾 ) → ( ( 1st ‘ 𝑝 ) ≠ 0 ∨ 𝑦 ≠ 0 ) ) ) ) |
| 243 |
|
oveq2 |
⊢ ( 𝑦 = ( 2nd ‘ 𝑝 ) → ( ( 1st ‘ 𝑝 ) + 𝑦 ) = ( ( 1st ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) ) |
| 244 |
243
|
neeq1d |
⊢ ( 𝑦 = ( 2nd ‘ 𝑝 ) → ( ( ( 1st ‘ 𝑝 ) + 𝑦 ) ≠ ( 0g ‘ 𝐾 ) ↔ ( ( 1st ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) ≠ ( 0g ‘ 𝐾 ) ) ) |
| 245 |
|
neeq1 |
⊢ ( 𝑦 = ( 2nd ‘ 𝑝 ) → ( 𝑦 ≠ 0 ↔ ( 2nd ‘ 𝑝 ) ≠ 0 ) ) |
| 246 |
245
|
orbi2d |
⊢ ( 𝑦 = ( 2nd ‘ 𝑝 ) → ( ( ( 1st ‘ 𝑝 ) ≠ 0 ∨ 𝑦 ≠ 0 ) ↔ ( ( 1st ‘ 𝑝 ) ≠ 0 ∨ ( 2nd ‘ 𝑝 ) ≠ 0 ) ) ) |
| 247 |
244 246
|
imbi12d |
⊢ ( 𝑦 = ( 2nd ‘ 𝑝 ) → ( ( ( ( 1st ‘ 𝑝 ) + 𝑦 ) ≠ ( 0g ‘ 𝐾 ) → ( ( 1st ‘ 𝑝 ) ≠ 0 ∨ 𝑦 ≠ 0 ) ) ↔ ( ( ( 1st ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) ≠ ( 0g ‘ 𝐾 ) → ( ( 1st ‘ 𝑝 ) ≠ 0 ∨ ( 2nd ‘ 𝑝 ) ≠ 0 ) ) ) ) |
| 248 |
242 247
|
rspc2v |
⊢ ( ( ( 1st ‘ 𝑝 ) ∈ 𝐵 ∧ ( 2nd ‘ 𝑝 ) ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ≠ ( 0g ‘ 𝐾 ) → ( 𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ) ) → ( ( ( 1st ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) ≠ ( 0g ‘ 𝐾 ) → ( ( 1st ‘ 𝑝 ) ≠ 0 ∨ ( 2nd ‘ 𝑝 ) ≠ 0 ) ) ) ) |
| 249 |
236 237 248
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ≠ ( 0g ‘ 𝐾 ) → ( 𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ) ) → ( ( ( 1st ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) ≠ ( 0g ‘ 𝐾 ) → ( ( 1st ‘ 𝑝 ) ≠ 0 ∨ ( 2nd ‘ 𝑝 ) ≠ 0 ) ) ) ) |
| 250 |
215 234 249
|
mp2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( ( 1st ‘ 𝑝 ) ≠ 0 ∨ ( 2nd ‘ 𝑝 ) ≠ 0 ) ) |
| 251 |
1 2 3 4 5 6 7 8 9 13 11 15
|
sibfinima |
⊢ ( ( ( 𝜑 ∧ ( 1st ‘ 𝑝 ) ∈ ran 𝐹 ∧ ( 2nd ‘ 𝑝 ) ∈ ran 𝐺 ) ∧ ( ( 1st ‘ 𝑝 ) ≠ 0 ∨ ( 2nd ‘ 𝑝 ) ≠ 0 ) ) → ( 𝑀 ‘ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ∈ ( 0 [,) +∞ ) ) |
| 252 |
200 204 206 250 251
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( 𝑀 ‘ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ∈ ( 0 [,) +∞ ) ) |
| 253 |
199 252
|
esumpfinval |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) → Σ* 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( 𝑀 ‘ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) = Σ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( 𝑀 ‘ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ) |
| 254 |
172 196 253
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) → ( 𝑀 ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ) = Σ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( 𝑀 ‘ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ) |
| 255 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 256 |
255 252
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( 𝑀 ‘ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ∈ ℝ ) |
| 257 |
199 256
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) → Σ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( 𝑀 ‘ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ∈ ℝ ) |
| 258 |
254 257
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) → ( 𝑀 ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ) ∈ ℝ ) |
| 259 |
175
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 𝑀 ∈ ( measures ‘ dom 𝑀 ) ) |
| 260 |
176 109
|
sylanl2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ∈ dom 𝑀 ) |
| 261 |
|
measge0 |
⊢ ( ( 𝑀 ∈ ( measures ‘ dom 𝑀 ) ∧ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ∈ dom 𝑀 ) → 0 ≤ ( 𝑀 ‘ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ) |
| 262 |
259 260 261
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 0 ≤ ( 𝑀 ‘ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ) |
| 263 |
199 256 262
|
fsumge0 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) → 0 ≤ Σ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( 𝑀 ‘ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ) |
| 264 |
263 254
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) → 0 ≤ ( 𝑀 ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ) ) |
| 265 |
|
elrege0 |
⊢ ( ( 𝑀 ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝑀 ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ) ∈ ℝ ∧ 0 ≤ ( 𝑀 ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ) ) ) |
| 266 |
258 264 265
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) → ( 𝑀 ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ) ∈ ( 0 [,) +∞ ) ) |
| 267 |
266
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ( 𝑀 ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ) ∈ ( 0 [,) +∞ ) ) |
| 268 |
|
eqid |
⊢ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) = ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) |
| 269 |
|
eqid |
⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) |
| 270 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐾 ) = ( ·𝑠 ‘ 𝐾 ) |
| 271 |
|
eqid |
⊢ ( ℝHom ‘ ( Scalar ‘ 𝐾 ) ) = ( ℝHom ‘ ( Scalar ‘ 𝐾 ) ) |
| 272 |
10 30 268 269 270 271 14 8
|
issibf |
⊢ ( 𝜑 → ( ( 𝐹 ∘f + 𝐺 ) ∈ dom ( 𝐾 sitg 𝑀 ) ↔ ( ( 𝐹 ∘f + 𝐺 ) ∈ ( dom 𝑀 MblFnM ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) ∧ ran ( 𝐹 ∘f + 𝐺 ) ∈ Fin ∧ ∀ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ( 𝑀 ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ) ∈ ( 0 [,) +∞ ) ) ) ) |
| 273 |
170 138 267 272
|
mpbir3and |
⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) ∈ dom ( 𝐾 sitg 𝑀 ) ) |