| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sitgval.b | ⊢ 𝐵  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | sitgval.j | ⊢ 𝐽  =  ( TopOpen ‘ 𝑊 ) | 
						
							| 3 |  | sitgval.s | ⊢ 𝑆  =  ( sigaGen ‘ 𝐽 ) | 
						
							| 4 |  | sitgval.0 | ⊢  0   =  ( 0g ‘ 𝑊 ) | 
						
							| 5 |  | sitgval.x | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 6 |  | sitgval.h | ⊢ 𝐻  =  ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) | 
						
							| 7 |  | sitgval.1 | ⊢ ( 𝜑  →  𝑊  ∈  𝑉 ) | 
						
							| 8 |  | sitgval.2 | ⊢ ( 𝜑  →  𝑀  ∈  ∪  ran  measures ) | 
						
							| 9 |  | sibfmbl.1 | ⊢ ( 𝜑  →  𝐹  ∈  dom  ( 𝑊 sitg 𝑀 ) ) | 
						
							| 10 |  | sibfof.c | ⊢ 𝐶  =  ( Base ‘ 𝐾 ) | 
						
							| 11 |  | sibfof.0 | ⊢ ( 𝜑  →  𝑊  ∈  TopSp ) | 
						
							| 12 |  | sibfof.1 | ⊢ ( 𝜑  →   +  : ( 𝐵  ×  𝐵 ) ⟶ 𝐶 ) | 
						
							| 13 |  | sibfof.2 | ⊢ ( 𝜑  →  𝐺  ∈  dom  ( 𝑊 sitg 𝑀 ) ) | 
						
							| 14 |  | sibfof.3 | ⊢ ( 𝜑  →  𝐾  ∈  TopSp ) | 
						
							| 15 |  | sibfof.4 | ⊢ ( 𝜑  →  𝐽  ∈  Fre ) | 
						
							| 16 |  | sibfof.5 | ⊢ ( 𝜑  →  (  0   +   0  )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 17 | 1 2 | tpsuni | ⊢ ( 𝑊  ∈  TopSp  →  𝐵  =  ∪  𝐽 ) | 
						
							| 18 | 11 17 | syl | ⊢ ( 𝜑  →  𝐵  =  ∪  𝐽 ) | 
						
							| 19 | 18 | sqxpeqd | ⊢ ( 𝜑  →  ( 𝐵  ×  𝐵 )  =  ( ∪  𝐽  ×  ∪  𝐽 ) ) | 
						
							| 20 | 19 | feq2d | ⊢ ( 𝜑  →  (  +  : ( 𝐵  ×  𝐵 ) ⟶ 𝐶  ↔   +  : ( ∪  𝐽  ×  ∪  𝐽 ) ⟶ 𝐶 ) ) | 
						
							| 21 | 12 20 | mpbid | ⊢ ( 𝜑  →   +  : ( ∪  𝐽  ×  ∪  𝐽 ) ⟶ 𝐶 ) | 
						
							| 22 | 21 | fovcdmda | ⊢ ( ( 𝜑  ∧  ( 𝑧  ∈  ∪  𝐽  ∧  𝑥  ∈  ∪  𝐽 ) )  →  ( 𝑧  +  𝑥 )  ∈  𝐶 ) | 
						
							| 23 | 1 2 3 4 5 6 7 8 9 | sibff | ⊢ ( 𝜑  →  𝐹 : ∪  dom  𝑀 ⟶ ∪  𝐽 ) | 
						
							| 24 | 1 2 3 4 5 6 7 8 13 | sibff | ⊢ ( 𝜑  →  𝐺 : ∪  dom  𝑀 ⟶ ∪  𝐽 ) | 
						
							| 25 |  | dmexg | ⊢ ( 𝑀  ∈  ∪  ran  measures  →  dom  𝑀  ∈  V ) | 
						
							| 26 |  | uniexg | ⊢ ( dom  𝑀  ∈  V  →  ∪  dom  𝑀  ∈  V ) | 
						
							| 27 | 8 25 26 | 3syl | ⊢ ( 𝜑  →  ∪  dom  𝑀  ∈  V ) | 
						
							| 28 |  | inidm | ⊢ ( ∪  dom  𝑀  ∩  ∪  dom  𝑀 )  =  ∪  dom  𝑀 | 
						
							| 29 | 22 23 24 27 27 28 | off | ⊢ ( 𝜑  →  ( 𝐹  ∘f   +  𝐺 ) : ∪  dom  𝑀 ⟶ 𝐶 ) | 
						
							| 30 |  | eqid | ⊢ ( TopOpen ‘ 𝐾 )  =  ( TopOpen ‘ 𝐾 ) | 
						
							| 31 | 10 30 | tpsuni | ⊢ ( 𝐾  ∈  TopSp  →  𝐶  =  ∪  ( TopOpen ‘ 𝐾 ) ) | 
						
							| 32 | 14 31 | syl | ⊢ ( 𝜑  →  𝐶  =  ∪  ( TopOpen ‘ 𝐾 ) ) | 
						
							| 33 |  | fvex | ⊢ ( TopOpen ‘ 𝐾 )  ∈  V | 
						
							| 34 |  | unisg | ⊢ ( ( TopOpen ‘ 𝐾 )  ∈  V  →  ∪  ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) )  =  ∪  ( TopOpen ‘ 𝐾 ) ) | 
						
							| 35 | 33 34 | ax-mp | ⊢ ∪  ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) )  =  ∪  ( TopOpen ‘ 𝐾 ) | 
						
							| 36 | 32 35 | eqtr4di | ⊢ ( 𝜑  →  𝐶  =  ∪  ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) | 
						
							| 37 | 36 | feq3d | ⊢ ( 𝜑  →  ( ( 𝐹  ∘f   +  𝐺 ) : ∪  dom  𝑀 ⟶ 𝐶  ↔  ( 𝐹  ∘f   +  𝐺 ) : ∪  dom  𝑀 ⟶ ∪  ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) ) | 
						
							| 38 | 29 37 | mpbid | ⊢ ( 𝜑  →  ( 𝐹  ∘f   +  𝐺 ) : ∪  dom  𝑀 ⟶ ∪  ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) | 
						
							| 39 | 33 | a1i | ⊢ ( 𝜑  →  ( TopOpen ‘ 𝐾 )  ∈  V ) | 
						
							| 40 | 39 | sgsiga | ⊢ ( 𝜑  →  ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) )  ∈  ∪  ran  sigAlgebra ) | 
						
							| 41 | 40 | uniexd | ⊢ ( 𝜑  →  ∪  ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) )  ∈  V ) | 
						
							| 42 | 41 27 | elmapd | ⊢ ( 𝜑  →  ( ( 𝐹  ∘f   +  𝐺 )  ∈  ( ∪  ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) )  ↑m  ∪  dom  𝑀 )  ↔  ( 𝐹  ∘f   +  𝐺 ) : ∪  dom  𝑀 ⟶ ∪  ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) ) | 
						
							| 43 | 38 42 | mpbird | ⊢ ( 𝜑  →  ( 𝐹  ∘f   +  𝐺 )  ∈  ( ∪  ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) )  ↑m  ∪  dom  𝑀 ) ) | 
						
							| 44 |  | inundif | ⊢ ( ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) )  ∪  ( 𝑏  ∖  ran  ( 𝐹  ∘f   +  𝐺 ) ) )  =  𝑏 | 
						
							| 45 | 44 | imaeq2i | ⊢ ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  ( ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) )  ∪  ( 𝑏  ∖  ran  ( 𝐹  ∘f   +  𝐺 ) ) ) )  =  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  𝑏 ) | 
						
							| 46 |  | ffun | ⊢ ( ( 𝐹  ∘f   +  𝐺 ) : ∪  dom  𝑀 ⟶ 𝐶  →  Fun  ( 𝐹  ∘f   +  𝐺 ) ) | 
						
							| 47 |  | unpreima | ⊢ ( Fun  ( 𝐹  ∘f   +  𝐺 )  →  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  ( ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) )  ∪  ( 𝑏  ∖  ran  ( 𝐹  ∘f   +  𝐺 ) ) ) )  =  ( ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) ) )  ∪  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  ( 𝑏  ∖  ran  ( 𝐹  ∘f   +  𝐺 ) ) ) ) ) | 
						
							| 48 | 29 46 47 | 3syl | ⊢ ( 𝜑  →  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  ( ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) )  ∪  ( 𝑏  ∖  ran  ( 𝐹  ∘f   +  𝐺 ) ) ) )  =  ( ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) ) )  ∪  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  ( 𝑏  ∖  ran  ( 𝐹  ∘f   +  𝐺 ) ) ) ) ) | 
						
							| 49 | 48 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) )  →  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  ( ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) )  ∪  ( 𝑏  ∖  ran  ( 𝐹  ∘f   +  𝐺 ) ) ) )  =  ( ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) ) )  ∪  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  ( 𝑏  ∖  ran  ( 𝐹  ∘f   +  𝐺 ) ) ) ) ) | 
						
							| 50 | 45 49 | eqtr3id | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) )  →  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  𝑏 )  =  ( ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) ) )  ∪  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  ( 𝑏  ∖  ran  ( 𝐹  ∘f   +  𝐺 ) ) ) ) ) | 
						
							| 51 |  | dmmeas | ⊢ ( 𝑀  ∈  ∪  ran  measures  →  dom  𝑀  ∈  ∪  ran  sigAlgebra ) | 
						
							| 52 | 8 51 | syl | ⊢ ( 𝜑  →  dom  𝑀  ∈  ∪  ran  sigAlgebra ) | 
						
							| 53 | 52 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) )  →  dom  𝑀  ∈  ∪  ran  sigAlgebra ) | 
						
							| 54 |  | imaiun | ⊢ ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  ∪  𝑧  ∈  ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) ) { 𝑧 } )  =  ∪  𝑧  ∈  ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) ) ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑧 } ) | 
						
							| 55 |  | iunid | ⊢ ∪  𝑧  ∈  ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) ) { 𝑧 }  =  ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) ) | 
						
							| 56 | 55 | imaeq2i | ⊢ ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  ∪  𝑧  ∈  ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) ) { 𝑧 } )  =  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) ) ) | 
						
							| 57 | 54 56 | eqtr3i | ⊢ ∪  𝑧  ∈  ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) ) ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑧 } )  =  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) ) ) | 
						
							| 58 |  | inss2 | ⊢ ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) )  ⊆  ran  ( 𝐹  ∘f   +  𝐺 ) | 
						
							| 59 | 18 | feq3d | ⊢ ( 𝜑  →  ( 𝐹 : ∪  dom  𝑀 ⟶ 𝐵  ↔  𝐹 : ∪  dom  𝑀 ⟶ ∪  𝐽 ) ) | 
						
							| 60 | 23 59 | mpbird | ⊢ ( 𝜑  →  𝐹 : ∪  dom  𝑀 ⟶ 𝐵 ) | 
						
							| 61 | 18 | feq3d | ⊢ ( 𝜑  →  ( 𝐺 : ∪  dom  𝑀 ⟶ 𝐵  ↔  𝐺 : ∪  dom  𝑀 ⟶ ∪  𝐽 ) ) | 
						
							| 62 | 24 61 | mpbird | ⊢ ( 𝜑  →  𝐺 : ∪  dom  𝑀 ⟶ 𝐵 ) | 
						
							| 63 | 12 | ffnd | ⊢ ( 𝜑  →   +   Fn  ( 𝐵  ×  𝐵 ) ) | 
						
							| 64 | 60 62 27 63 | ofpreima2 | ⊢ ( 𝜑  →  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑧 } )  =  ∪  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) ( ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∩  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) ) ) | 
						
							| 65 | 64 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ran  ( 𝐹  ∘f   +  𝐺 ) )  →  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑧 } )  =  ∪  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) ( ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∩  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) ) ) | 
						
							| 66 | 52 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ran  ( 𝐹  ∘f   +  𝐺 ) )  →  dom  𝑀  ∈  ∪  ran  sigAlgebra ) | 
						
							| 67 | 52 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ran  ( 𝐹  ∘f   +  𝐺 ) )  ∧  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) )  →  dom  𝑀  ∈  ∪  ran  sigAlgebra ) | 
						
							| 68 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ran  ( 𝐹  ∘f   +  𝐺 ) )  ∧  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) )  →  𝜑 ) | 
						
							| 69 |  | inss1 | ⊢ ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) )  ⊆  ( ◡  +   “  { 𝑧 } ) | 
						
							| 70 |  | cnvimass | ⊢ ( ◡  +   “  { 𝑧 } )  ⊆  dom   + | 
						
							| 71 | 70 12 | fssdm | ⊢ ( 𝜑  →  ( ◡  +   “  { 𝑧 } )  ⊆  ( 𝐵  ×  𝐵 ) ) | 
						
							| 72 | 71 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ran  ( 𝐹  ∘f   +  𝐺 ) )  →  ( ◡  +   “  { 𝑧 } )  ⊆  ( 𝐵  ×  𝐵 ) ) | 
						
							| 73 | 69 72 | sstrid | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ran  ( 𝐹  ∘f   +  𝐺 ) )  →  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) )  ⊆  ( 𝐵  ×  𝐵 ) ) | 
						
							| 74 | 73 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ran  ( 𝐹  ∘f   +  𝐺 ) )  ∧  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) )  →  𝑝  ∈  ( 𝐵  ×  𝐵 ) ) | 
						
							| 75 | 52 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( 𝐵  ×  𝐵 ) )  →  dom  𝑀  ∈  ∪  ran  sigAlgebra ) | 
						
							| 76 | 15 | sgsiga | ⊢ ( 𝜑  →  ( sigaGen ‘ 𝐽 )  ∈  ∪  ran  sigAlgebra ) | 
						
							| 77 | 3 76 | eqeltrid | ⊢ ( 𝜑  →  𝑆  ∈  ∪  ran  sigAlgebra ) | 
						
							| 78 | 77 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( 𝐵  ×  𝐵 ) )  →  𝑆  ∈  ∪  ran  sigAlgebra ) | 
						
							| 79 | 1 2 3 4 5 6 7 8 9 | sibfmbl | ⊢ ( 𝜑  →  𝐹  ∈  ( dom  𝑀 MblFnM 𝑆 ) ) | 
						
							| 80 | 79 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( 𝐵  ×  𝐵 ) )  →  𝐹  ∈  ( dom  𝑀 MblFnM 𝑆 ) ) | 
						
							| 81 | 2 | tpstop | ⊢ ( 𝑊  ∈  TopSp  →  𝐽  ∈  Top ) | 
						
							| 82 |  | cldssbrsiga | ⊢ ( 𝐽  ∈  Top  →  ( Clsd ‘ 𝐽 )  ⊆  ( sigaGen ‘ 𝐽 ) ) | 
						
							| 83 | 11 81 82 | 3syl | ⊢ ( 𝜑  →  ( Clsd ‘ 𝐽 )  ⊆  ( sigaGen ‘ 𝐽 ) ) | 
						
							| 84 | 83 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( 𝐵  ×  𝐵 ) )  →  ( Clsd ‘ 𝐽 )  ⊆  ( sigaGen ‘ 𝐽 ) ) | 
						
							| 85 | 15 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( 𝐵  ×  𝐵 ) )  →  𝐽  ∈  Fre ) | 
						
							| 86 |  | xp1st | ⊢ ( 𝑝  ∈  ( 𝐵  ×  𝐵 )  →  ( 1st  ‘ 𝑝 )  ∈  𝐵 ) | 
						
							| 87 | 86 | adantl | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( 𝐵  ×  𝐵 ) )  →  ( 1st  ‘ 𝑝 )  ∈  𝐵 ) | 
						
							| 88 | 18 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( 𝐵  ×  𝐵 ) )  →  𝐵  =  ∪  𝐽 ) | 
						
							| 89 | 87 88 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( 𝐵  ×  𝐵 ) )  →  ( 1st  ‘ 𝑝 )  ∈  ∪  𝐽 ) | 
						
							| 90 |  | eqid | ⊢ ∪  𝐽  =  ∪  𝐽 | 
						
							| 91 | 90 | t1sncld | ⊢ ( ( 𝐽  ∈  Fre  ∧  ( 1st  ‘ 𝑝 )  ∈  ∪  𝐽 )  →  { ( 1st  ‘ 𝑝 ) }  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 92 | 85 89 91 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( 𝐵  ×  𝐵 ) )  →  { ( 1st  ‘ 𝑝 ) }  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 93 | 84 92 | sseldd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( 𝐵  ×  𝐵 ) )  →  { ( 1st  ‘ 𝑝 ) }  ∈  ( sigaGen ‘ 𝐽 ) ) | 
						
							| 94 | 93 3 | eleqtrrdi | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( 𝐵  ×  𝐵 ) )  →  { ( 1st  ‘ 𝑝 ) }  ∈  𝑆 ) | 
						
							| 95 | 75 78 80 94 | mbfmcnvima | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( 𝐵  ×  𝐵 ) )  →  ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∈  dom  𝑀 ) | 
						
							| 96 | 68 74 95 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ran  ( 𝐹  ∘f   +  𝐺 ) )  ∧  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) )  →  ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∈  dom  𝑀 ) | 
						
							| 97 | 1 2 3 4 5 6 7 8 13 | sibfmbl | ⊢ ( 𝜑  →  𝐺  ∈  ( dom  𝑀 MblFnM 𝑆 ) ) | 
						
							| 98 | 97 | adantr | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( 𝐵  ×  𝐵 ) )  →  𝐺  ∈  ( dom  𝑀 MblFnM 𝑆 ) ) | 
						
							| 99 |  | xp2nd | ⊢ ( 𝑝  ∈  ( 𝐵  ×  𝐵 )  →  ( 2nd  ‘ 𝑝 )  ∈  𝐵 ) | 
						
							| 100 | 99 | adantl | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( 𝐵  ×  𝐵 ) )  →  ( 2nd  ‘ 𝑝 )  ∈  𝐵 ) | 
						
							| 101 | 100 88 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( 𝐵  ×  𝐵 ) )  →  ( 2nd  ‘ 𝑝 )  ∈  ∪  𝐽 ) | 
						
							| 102 | 90 | t1sncld | ⊢ ( ( 𝐽  ∈  Fre  ∧  ( 2nd  ‘ 𝑝 )  ∈  ∪  𝐽 )  →  { ( 2nd  ‘ 𝑝 ) }  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 103 | 85 101 102 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( 𝐵  ×  𝐵 ) )  →  { ( 2nd  ‘ 𝑝 ) }  ∈  ( Clsd ‘ 𝐽 ) ) | 
						
							| 104 | 84 103 | sseldd | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( 𝐵  ×  𝐵 ) )  →  { ( 2nd  ‘ 𝑝 ) }  ∈  ( sigaGen ‘ 𝐽 ) ) | 
						
							| 105 | 104 3 | eleqtrrdi | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( 𝐵  ×  𝐵 ) )  →  { ( 2nd  ‘ 𝑝 ) }  ∈  𝑆 ) | 
						
							| 106 | 75 78 98 105 | mbfmcnvima | ⊢ ( ( 𝜑  ∧  𝑝  ∈  ( 𝐵  ×  𝐵 ) )  →  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } )  ∈  dom  𝑀 ) | 
						
							| 107 | 68 74 106 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ran  ( 𝐹  ∘f   +  𝐺 ) )  ∧  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) )  →  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } )  ∈  dom  𝑀 ) | 
						
							| 108 |  | inelsiga | ⊢ ( ( dom  𝑀  ∈  ∪  ran  sigAlgebra  ∧  ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∈  dom  𝑀  ∧  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } )  ∈  dom  𝑀 )  →  ( ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∩  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) )  ∈  dom  𝑀 ) | 
						
							| 109 | 67 96 107 108 | syl3anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ran  ( 𝐹  ∘f   +  𝐺 ) )  ∧  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) )  →  ( ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∩  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) )  ∈  dom  𝑀 ) | 
						
							| 110 | 109 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ran  ( 𝐹  ∘f   +  𝐺 ) )  →  ∀ 𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) ( ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∩  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) )  ∈  dom  𝑀 ) | 
						
							| 111 | 1 2 3 4 5 6 7 8 9 | sibfrn | ⊢ ( 𝜑  →  ran  𝐹  ∈  Fin ) | 
						
							| 112 | 1 2 3 4 5 6 7 8 13 | sibfrn | ⊢ ( 𝜑  →  ran  𝐺  ∈  Fin ) | 
						
							| 113 |  | xpfi | ⊢ ( ( ran  𝐹  ∈  Fin  ∧  ran  𝐺  ∈  Fin )  →  ( ran  𝐹  ×  ran  𝐺 )  ∈  Fin ) | 
						
							| 114 | 111 112 113 | syl2anc | ⊢ ( 𝜑  →  ( ran  𝐹  ×  ran  𝐺 )  ∈  Fin ) | 
						
							| 115 |  | inss2 | ⊢ ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) )  ⊆  ( ran  𝐹  ×  ran  𝐺 ) | 
						
							| 116 |  | ssdomg | ⊢ ( ( ran  𝐹  ×  ran  𝐺 )  ∈  Fin  →  ( ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) )  ⊆  ( ran  𝐹  ×  ran  𝐺 )  →  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) )  ≼  ( ran  𝐹  ×  ran  𝐺 ) ) ) | 
						
							| 117 | 114 115 116 | mpisyl | ⊢ ( 𝜑  →  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) )  ≼  ( ran  𝐹  ×  ran  𝐺 ) ) | 
						
							| 118 |  | isfinite | ⊢ ( ( ran  𝐹  ×  ran  𝐺 )  ∈  Fin  ↔  ( ran  𝐹  ×  ran  𝐺 )  ≺  ω ) | 
						
							| 119 | 118 | biimpi | ⊢ ( ( ran  𝐹  ×  ran  𝐺 )  ∈  Fin  →  ( ran  𝐹  ×  ran  𝐺 )  ≺  ω ) | 
						
							| 120 |  | sdomdom | ⊢ ( ( ran  𝐹  ×  ran  𝐺 )  ≺  ω  →  ( ran  𝐹  ×  ran  𝐺 )  ≼  ω ) | 
						
							| 121 | 114 119 120 | 3syl | ⊢ ( 𝜑  →  ( ran  𝐹  ×  ran  𝐺 )  ≼  ω ) | 
						
							| 122 |  | domtr | ⊢ ( ( ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) )  ≼  ( ran  𝐹  ×  ran  𝐺 )  ∧  ( ran  𝐹  ×  ran  𝐺 )  ≼  ω )  →  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) )  ≼  ω ) | 
						
							| 123 | 117 121 122 | syl2anc | ⊢ ( 𝜑  →  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) )  ≼  ω ) | 
						
							| 124 | 123 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ran  ( 𝐹  ∘f   +  𝐺 ) )  →  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) )  ≼  ω ) | 
						
							| 125 |  | nfcv | ⊢ Ⅎ 𝑝 ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) | 
						
							| 126 | 125 | sigaclcuni | ⊢ ( ( dom  𝑀  ∈  ∪  ran  sigAlgebra  ∧  ∀ 𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) ( ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∩  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) )  ∈  dom  𝑀  ∧  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) )  ≼  ω )  →  ∪  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) ( ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∩  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) )  ∈  dom  𝑀 ) | 
						
							| 127 | 66 110 124 126 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ran  ( 𝐹  ∘f   +  𝐺 ) )  →  ∪  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) ( ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∩  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) )  ∈  dom  𝑀 ) | 
						
							| 128 | 65 127 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ran  ( 𝐹  ∘f   +  𝐺 ) )  →  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑧 } )  ∈  dom  𝑀 ) | 
						
							| 129 | 128 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  ran  ( 𝐹  ∘f   +  𝐺 ) ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑧 } )  ∈  dom  𝑀 ) | 
						
							| 130 |  | ssralv | ⊢ ( ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) )  ⊆  ran  ( 𝐹  ∘f   +  𝐺 )  →  ( ∀ 𝑧  ∈  ran  ( 𝐹  ∘f   +  𝐺 ) ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑧 } )  ∈  dom  𝑀  →  ∀ 𝑧  ∈  ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) ) ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑧 } )  ∈  dom  𝑀 ) ) | 
						
							| 131 | 58 129 130 | mpsyl | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) ) ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑧 } )  ∈  dom  𝑀 ) | 
						
							| 132 | 131 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) )  →  ∀ 𝑧  ∈  ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) ) ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑧 } )  ∈  dom  𝑀 ) | 
						
							| 133 | 12 | ffund | ⊢ ( 𝜑  →  Fun   +  ) | 
						
							| 134 |  | imafi | ⊢ ( ( Fun   +   ∧  ( ran  𝐹  ×  ran  𝐺 )  ∈  Fin )  →  (  +   “  ( ran  𝐹  ×  ran  𝐺 ) )  ∈  Fin ) | 
						
							| 135 | 133 114 134 | syl2anc | ⊢ ( 𝜑  →  (  +   “  ( ran  𝐹  ×  ran  𝐺 ) )  ∈  Fin ) | 
						
							| 136 | 23 24 21 27 | ofrn2 | ⊢ ( 𝜑  →  ran  ( 𝐹  ∘f   +  𝐺 )  ⊆  (  +   “  ( ran  𝐹  ×  ran  𝐺 ) ) ) | 
						
							| 137 |  | ssfi | ⊢ ( ( (  +   “  ( ran  𝐹  ×  ran  𝐺 ) )  ∈  Fin  ∧  ran  ( 𝐹  ∘f   +  𝐺 )  ⊆  (  +   “  ( ran  𝐹  ×  ran  𝐺 ) ) )  →  ran  ( 𝐹  ∘f   +  𝐺 )  ∈  Fin ) | 
						
							| 138 | 135 136 137 | syl2anc | ⊢ ( 𝜑  →  ran  ( 𝐹  ∘f   +  𝐺 )  ∈  Fin ) | 
						
							| 139 |  | ssdomg | ⊢ ( ran  ( 𝐹  ∘f   +  𝐺 )  ∈  Fin  →  ( ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) )  ⊆  ran  ( 𝐹  ∘f   +  𝐺 )  →  ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) )  ≼  ran  ( 𝐹  ∘f   +  𝐺 ) ) ) | 
						
							| 140 | 138 58 139 | mpisyl | ⊢ ( 𝜑  →  ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) )  ≼  ran  ( 𝐹  ∘f   +  𝐺 ) ) | 
						
							| 141 |  | isfinite | ⊢ ( ran  ( 𝐹  ∘f   +  𝐺 )  ∈  Fin  ↔  ran  ( 𝐹  ∘f   +  𝐺 )  ≺  ω ) | 
						
							| 142 | 138 141 | sylib | ⊢ ( 𝜑  →  ran  ( 𝐹  ∘f   +  𝐺 )  ≺  ω ) | 
						
							| 143 |  | sdomdom | ⊢ ( ran  ( 𝐹  ∘f   +  𝐺 )  ≺  ω  →  ran  ( 𝐹  ∘f   +  𝐺 )  ≼  ω ) | 
						
							| 144 | 142 143 | syl | ⊢ ( 𝜑  →  ran  ( 𝐹  ∘f   +  𝐺 )  ≼  ω ) | 
						
							| 145 |  | domtr | ⊢ ( ( ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) )  ≼  ran  ( 𝐹  ∘f   +  𝐺 )  ∧  ran  ( 𝐹  ∘f   +  𝐺 )  ≼  ω )  →  ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) )  ≼  ω ) | 
						
							| 146 | 140 144 145 | syl2anc | ⊢ ( 𝜑  →  ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) )  ≼  ω ) | 
						
							| 147 | 146 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) )  →  ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) )  ≼  ω ) | 
						
							| 148 |  | nfcv | ⊢ Ⅎ 𝑧 ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) ) | 
						
							| 149 | 148 | sigaclcuni | ⊢ ( ( dom  𝑀  ∈  ∪  ran  sigAlgebra  ∧  ∀ 𝑧  ∈  ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) ) ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑧 } )  ∈  dom  𝑀  ∧  ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) )  ≼  ω )  →  ∪  𝑧  ∈  ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) ) ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑧 } )  ∈  dom  𝑀 ) | 
						
							| 150 | 53 132 147 149 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) )  →  ∪  𝑧  ∈  ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) ) ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑧 } )  ∈  dom  𝑀 ) | 
						
							| 151 | 57 150 | eqeltrrid | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) )  →  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) ) )  ∈  dom  𝑀 ) | 
						
							| 152 |  | difpreima | ⊢ ( Fun  ( 𝐹  ∘f   +  𝐺 )  →  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  ( 𝑏  ∖  ran  ( 𝐹  ∘f   +  𝐺 ) ) )  =  ( ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  𝑏 )  ∖  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  ran  ( 𝐹  ∘f   +  𝐺 ) ) ) ) | 
						
							| 153 | 29 46 152 | 3syl | ⊢ ( 𝜑  →  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  ( 𝑏  ∖  ran  ( 𝐹  ∘f   +  𝐺 ) ) )  =  ( ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  𝑏 )  ∖  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  ran  ( 𝐹  ∘f   +  𝐺 ) ) ) ) | 
						
							| 154 |  | cnvimarndm | ⊢ ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  ran  ( 𝐹  ∘f   +  𝐺 ) )  =  dom  ( 𝐹  ∘f   +  𝐺 ) | 
						
							| 155 | 154 | difeq2i | ⊢ ( ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  𝑏 )  ∖  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  ran  ( 𝐹  ∘f   +  𝐺 ) ) )  =  ( ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  𝑏 )  ∖  dom  ( 𝐹  ∘f   +  𝐺 ) ) | 
						
							| 156 |  | cnvimass | ⊢ ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  𝑏 )  ⊆  dom  ( 𝐹  ∘f   +  𝐺 ) | 
						
							| 157 |  | ssdif0 | ⊢ ( ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  𝑏 )  ⊆  dom  ( 𝐹  ∘f   +  𝐺 )  ↔  ( ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  𝑏 )  ∖  dom  ( 𝐹  ∘f   +  𝐺 ) )  =  ∅ ) | 
						
							| 158 | 156 157 | mpbi | ⊢ ( ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  𝑏 )  ∖  dom  ( 𝐹  ∘f   +  𝐺 ) )  =  ∅ | 
						
							| 159 | 155 158 | eqtri | ⊢ ( ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  𝑏 )  ∖  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  ran  ( 𝐹  ∘f   +  𝐺 ) ) )  =  ∅ | 
						
							| 160 | 153 159 | eqtrdi | ⊢ ( 𝜑  →  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  ( 𝑏  ∖  ran  ( 𝐹  ∘f   +  𝐺 ) ) )  =  ∅ ) | 
						
							| 161 |  | 0elsiga | ⊢ ( dom  𝑀  ∈  ∪  ran  sigAlgebra  →  ∅  ∈  dom  𝑀 ) | 
						
							| 162 | 8 51 161 | 3syl | ⊢ ( 𝜑  →  ∅  ∈  dom  𝑀 ) | 
						
							| 163 | 160 162 | eqeltrd | ⊢ ( 𝜑  →  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  ( 𝑏  ∖  ran  ( 𝐹  ∘f   +  𝐺 ) ) )  ∈  dom  𝑀 ) | 
						
							| 164 | 163 | adantr | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) )  →  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  ( 𝑏  ∖  ran  ( 𝐹  ∘f   +  𝐺 ) ) )  ∈  dom  𝑀 ) | 
						
							| 165 |  | unelsiga | ⊢ ( ( dom  𝑀  ∈  ∪  ran  sigAlgebra  ∧  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) ) )  ∈  dom  𝑀  ∧  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  ( 𝑏  ∖  ran  ( 𝐹  ∘f   +  𝐺 ) ) )  ∈  dom  𝑀 )  →  ( ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) ) )  ∪  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  ( 𝑏  ∖  ran  ( 𝐹  ∘f   +  𝐺 ) ) ) )  ∈  dom  𝑀 ) | 
						
							| 166 | 53 151 164 165 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) )  →  ( ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  ( 𝑏  ∩  ran  ( 𝐹  ∘f   +  𝐺 ) ) )  ∪  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  ( 𝑏  ∖  ran  ( 𝐹  ∘f   +  𝐺 ) ) ) )  ∈  dom  𝑀 ) | 
						
							| 167 | 50 166 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑏  ∈  ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) )  →  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  𝑏 )  ∈  dom  𝑀 ) | 
						
							| 168 | 167 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑏  ∈  ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  𝑏 )  ∈  dom  𝑀 ) | 
						
							| 169 | 52 40 | ismbfm | ⊢ ( 𝜑  →  ( ( 𝐹  ∘f   +  𝐺 )  ∈  ( dom  𝑀 MblFnM ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) )  ↔  ( ( 𝐹  ∘f   +  𝐺 )  ∈  ( ∪  ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) )  ↑m  ∪  dom  𝑀 )  ∧  ∀ 𝑏  ∈  ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  𝑏 )  ∈  dom  𝑀 ) ) ) | 
						
							| 170 | 43 168 169 | mpbir2and | ⊢ ( 𝜑  →  ( 𝐹  ∘f   +  𝐺 )  ∈  ( dom  𝑀 MblFnM ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) ) | 
						
							| 171 | 64 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  →  ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑧 } )  =  ∪  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) ( ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∩  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) ) ) | 
						
							| 172 | 171 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  →  ( 𝑀 ‘ ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑧 } ) )  =  ( 𝑀 ‘ ∪  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) ( ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∩  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) ) ) ) | 
						
							| 173 |  | measbasedom | ⊢ ( 𝑀  ∈  ∪  ran  measures  ↔  𝑀  ∈  ( measures ‘ dom  𝑀 ) ) | 
						
							| 174 | 8 173 | sylib | ⊢ ( 𝜑  →  𝑀  ∈  ( measures ‘ dom  𝑀 ) ) | 
						
							| 175 | 174 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  →  𝑀  ∈  ( measures ‘ dom  𝑀 ) ) | 
						
							| 176 |  | eldifi | ⊢ ( 𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } )  →  𝑧  ∈  ran  ( 𝐹  ∘f   +  𝐺 ) ) | 
						
							| 177 | 176 110 | sylan2 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  →  ∀ 𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) ( ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∩  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) )  ∈  dom  𝑀 ) | 
						
							| 178 | 123 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  →  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) )  ≼  ω ) | 
						
							| 179 |  | sneq | ⊢ ( 𝑥  =  ( 1st  ‘ 𝑝 )  →  { 𝑥 }  =  { ( 1st  ‘ 𝑝 ) } ) | 
						
							| 180 | 179 | imaeq2d | ⊢ ( 𝑥  =  ( 1st  ‘ 𝑝 )  →  ( ◡ 𝐹  “  { 𝑥 } )  =  ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } ) ) | 
						
							| 181 |  | sneq | ⊢ ( 𝑦  =  ( 2nd  ‘ 𝑝 )  →  { 𝑦 }  =  { ( 2nd  ‘ 𝑝 ) } ) | 
						
							| 182 | 181 | imaeq2d | ⊢ ( 𝑦  =  ( 2nd  ‘ 𝑝 )  →  ( ◡ 𝐺  “  { 𝑦 } )  =  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) ) | 
						
							| 183 | 23 | ffund | ⊢ ( 𝜑  →  Fun  𝐹 ) | 
						
							| 184 |  | sndisj | ⊢ Disj  𝑥  ∈  ran  𝐹 { 𝑥 } | 
						
							| 185 |  | disjpreima | ⊢ ( ( Fun  𝐹  ∧  Disj  𝑥  ∈  ran  𝐹 { 𝑥 } )  →  Disj  𝑥  ∈  ran  𝐹 ( ◡ 𝐹  “  { 𝑥 } ) ) | 
						
							| 186 | 183 184 185 | sylancl | ⊢ ( 𝜑  →  Disj  𝑥  ∈  ran  𝐹 ( ◡ 𝐹  “  { 𝑥 } ) ) | 
						
							| 187 | 24 | ffund | ⊢ ( 𝜑  →  Fun  𝐺 ) | 
						
							| 188 |  | sndisj | ⊢ Disj  𝑦  ∈  ran  𝐺 { 𝑦 } | 
						
							| 189 |  | disjpreima | ⊢ ( ( Fun  𝐺  ∧  Disj  𝑦  ∈  ran  𝐺 { 𝑦 } )  →  Disj  𝑦  ∈  ran  𝐺 ( ◡ 𝐺  “  { 𝑦 } ) ) | 
						
							| 190 | 187 188 189 | sylancl | ⊢ ( 𝜑  →  Disj  𝑦  ∈  ran  𝐺 ( ◡ 𝐺  “  { 𝑦 } ) ) | 
						
							| 191 | 180 182 186 190 | disjxpin | ⊢ ( 𝜑  →  Disj  𝑝  ∈  ( ran  𝐹  ×  ran  𝐺 ) ( ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∩  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) ) ) | 
						
							| 192 |  | disjss1 | ⊢ ( ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) )  ⊆  ( ran  𝐹  ×  ran  𝐺 )  →  ( Disj  𝑝  ∈  ( ran  𝐹  ×  ran  𝐺 ) ( ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∩  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) )  →  Disj  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) ( ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∩  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) ) ) ) | 
						
							| 193 | 115 191 192 | mpsyl | ⊢ ( 𝜑  →  Disj  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) ( ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∩  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) ) ) | 
						
							| 194 | 193 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  →  Disj  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) ( ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∩  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) ) ) | 
						
							| 195 |  | measvuni | ⊢ ( ( 𝑀  ∈  ( measures ‘ dom  𝑀 )  ∧  ∀ 𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) ( ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∩  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) )  ∈  dom  𝑀  ∧  ( ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) )  ≼  ω  ∧  Disj  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) ( ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∩  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) ) ) )  →  ( 𝑀 ‘ ∪  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) ( ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∩  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) ) )  =  Σ* 𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) ( 𝑀 ‘ ( ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∩  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) ) ) ) | 
						
							| 196 | 175 177 178 194 195 | syl112anc | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  →  ( 𝑀 ‘ ∪  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) ( ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∩  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) ) )  =  Σ* 𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) ( 𝑀 ‘ ( ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∩  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) ) ) ) | 
						
							| 197 |  | ssfi | ⊢ ( ( ( ran  𝐹  ×  ran  𝐺 )  ∈  Fin  ∧  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) )  ⊆  ( ran  𝐹  ×  ran  𝐺 ) )  →  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) )  ∈  Fin ) | 
						
							| 198 | 114 115 197 | sylancl | ⊢ ( 𝜑  →  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) )  ∈  Fin ) | 
						
							| 199 | 198 | adantr | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  →  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) )  ∈  Fin ) | 
						
							| 200 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  ∧  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) )  →  𝜑 ) | 
						
							| 201 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  ∧  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) )  →  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) ) | 
						
							| 202 | 115 201 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  ∧  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) )  →  𝑝  ∈  ( ran  𝐹  ×  ran  𝐺 ) ) | 
						
							| 203 |  | xp1st | ⊢ ( 𝑝  ∈  ( ran  𝐹  ×  ran  𝐺 )  →  ( 1st  ‘ 𝑝 )  ∈  ran  𝐹 ) | 
						
							| 204 | 202 203 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  ∧  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) )  →  ( 1st  ‘ 𝑝 )  ∈  ran  𝐹 ) | 
						
							| 205 |  | xp2nd | ⊢ ( 𝑝  ∈  ( ran  𝐹  ×  ran  𝐺 )  →  ( 2nd  ‘ 𝑝 )  ∈  ran  𝐺 ) | 
						
							| 206 | 202 205 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  ∧  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) )  →  ( 2nd  ‘ 𝑝 )  ∈  ran  𝐺 ) | 
						
							| 207 |  | oveq12 | ⊢ ( ( 𝑥  =   0   ∧  𝑦  =   0  )  →  ( 𝑥  +  𝑦 )  =  (  0   +   0  ) ) | 
						
							| 208 | 207 16 | sylan9eqr | ⊢ ( ( 𝜑  ∧  ( 𝑥  =   0   ∧  𝑦  =   0  ) )  →  ( 𝑥  +  𝑦 )  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 209 | 208 | ex | ⊢ ( 𝜑  →  ( ( 𝑥  =   0   ∧  𝑦  =   0  )  →  ( 𝑥  +  𝑦 )  =  ( 0g ‘ 𝐾 ) ) ) | 
						
							| 210 | 209 | necon3ad | ⊢ ( 𝜑  →  ( ( 𝑥  +  𝑦 )  ≠  ( 0g ‘ 𝐾 )  →  ¬  ( 𝑥  =   0   ∧  𝑦  =   0  ) ) ) | 
						
							| 211 |  | neorian | ⊢ ( ( 𝑥  ≠   0   ∨  𝑦  ≠   0  )  ↔  ¬  ( 𝑥  =   0   ∧  𝑦  =   0  ) ) | 
						
							| 212 | 210 211 | imbitrrdi | ⊢ ( 𝜑  →  ( ( 𝑥  +  𝑦 )  ≠  ( 0g ‘ 𝐾 )  →  ( 𝑥  ≠   0   ∨  𝑦  ≠   0  ) ) ) | 
						
							| 213 | 212 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥  ∈  𝐵  ∧  𝑦  ∈  𝐵 ) )  →  ( ( 𝑥  +  𝑦 )  ≠  ( 0g ‘ 𝐾 )  →  ( 𝑥  ≠   0   ∨  𝑦  ≠   0  ) ) ) | 
						
							| 214 | 213 | ralrimivva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑥  +  𝑦 )  ≠  ( 0g ‘ 𝐾 )  →  ( 𝑥  ≠   0   ∨  𝑦  ≠   0  ) ) ) | 
						
							| 215 | 200 214 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  ∧  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) )  →  ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑥  +  𝑦 )  ≠  ( 0g ‘ 𝐾 )  →  ( 𝑥  ≠   0   ∨  𝑦  ≠   0  ) ) ) | 
						
							| 216 | 69 | a1i | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  →  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) )  ⊆  ( ◡  +   “  { 𝑧 } ) ) | 
						
							| 217 | 216 | sselda | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  ∧  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) )  →  𝑝  ∈  ( ◡  +   “  { 𝑧 } ) ) | 
						
							| 218 |  | fniniseg | ⊢ (  +   Fn  ( 𝐵  ×  𝐵 )  →  ( 𝑝  ∈  ( ◡  +   “  { 𝑧 } )  ↔  ( 𝑝  ∈  ( 𝐵  ×  𝐵 )  ∧  (  +  ‘ 𝑝 )  =  𝑧 ) ) ) | 
						
							| 219 | 200 63 218 | 3syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  ∧  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) )  →  ( 𝑝  ∈  ( ◡  +   “  { 𝑧 } )  ↔  ( 𝑝  ∈  ( 𝐵  ×  𝐵 )  ∧  (  +  ‘ 𝑝 )  =  𝑧 ) ) ) | 
						
							| 220 | 217 219 | mpbid | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  ∧  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) )  →  ( 𝑝  ∈  ( 𝐵  ×  𝐵 )  ∧  (  +  ‘ 𝑝 )  =  𝑧 ) ) | 
						
							| 221 |  | simpr | ⊢ ( ( 𝑝  ∈  ( 𝐵  ×  𝐵 )  ∧  (  +  ‘ 𝑝 )  =  𝑧 )  →  (  +  ‘ 𝑝 )  =  𝑧 ) | 
						
							| 222 |  | 1st2nd2 | ⊢ ( 𝑝  ∈  ( 𝐵  ×  𝐵 )  →  𝑝  =  〈 ( 1st  ‘ 𝑝 ) ,  ( 2nd  ‘ 𝑝 ) 〉 ) | 
						
							| 223 | 222 | fveq2d | ⊢ ( 𝑝  ∈  ( 𝐵  ×  𝐵 )  →  (  +  ‘ 𝑝 )  =  (  +  ‘ 〈 ( 1st  ‘ 𝑝 ) ,  ( 2nd  ‘ 𝑝 ) 〉 ) ) | 
						
							| 224 |  | df-ov | ⊢ ( ( 1st  ‘ 𝑝 )  +  ( 2nd  ‘ 𝑝 ) )  =  (  +  ‘ 〈 ( 1st  ‘ 𝑝 ) ,  ( 2nd  ‘ 𝑝 ) 〉 ) | 
						
							| 225 | 223 224 | eqtr4di | ⊢ ( 𝑝  ∈  ( 𝐵  ×  𝐵 )  →  (  +  ‘ 𝑝 )  =  ( ( 1st  ‘ 𝑝 )  +  ( 2nd  ‘ 𝑝 ) ) ) | 
						
							| 226 | 225 | adantr | ⊢ ( ( 𝑝  ∈  ( 𝐵  ×  𝐵 )  ∧  (  +  ‘ 𝑝 )  =  𝑧 )  →  (  +  ‘ 𝑝 )  =  ( ( 1st  ‘ 𝑝 )  +  ( 2nd  ‘ 𝑝 ) ) ) | 
						
							| 227 | 221 226 | eqtr3d | ⊢ ( ( 𝑝  ∈  ( 𝐵  ×  𝐵 )  ∧  (  +  ‘ 𝑝 )  =  𝑧 )  →  𝑧  =  ( ( 1st  ‘ 𝑝 )  +  ( 2nd  ‘ 𝑝 ) ) ) | 
						
							| 228 | 220 227 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  ∧  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) )  →  𝑧  =  ( ( 1st  ‘ 𝑝 )  +  ( 2nd  ‘ 𝑝 ) ) ) | 
						
							| 229 |  | simplr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  ∧  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) )  →  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) ) | 
						
							| 230 | 229 | eldifbd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  ∧  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) )  →  ¬  𝑧  ∈  { ( 0g ‘ 𝐾 ) } ) | 
						
							| 231 |  | velsn | ⊢ ( 𝑧  ∈  { ( 0g ‘ 𝐾 ) }  ↔  𝑧  =  ( 0g ‘ 𝐾 ) ) | 
						
							| 232 | 231 | necon3bbii | ⊢ ( ¬  𝑧  ∈  { ( 0g ‘ 𝐾 ) }  ↔  𝑧  ≠  ( 0g ‘ 𝐾 ) ) | 
						
							| 233 | 230 232 | sylib | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  ∧  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) )  →  𝑧  ≠  ( 0g ‘ 𝐾 ) ) | 
						
							| 234 | 228 233 | eqnetrrd | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  ∧  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) )  →  ( ( 1st  ‘ 𝑝 )  +  ( 2nd  ‘ 𝑝 ) )  ≠  ( 0g ‘ 𝐾 ) ) | 
						
							| 235 | 176 74 | sylanl2 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  ∧  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) )  →  𝑝  ∈  ( 𝐵  ×  𝐵 ) ) | 
						
							| 236 | 235 86 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  ∧  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) )  →  ( 1st  ‘ 𝑝 )  ∈  𝐵 ) | 
						
							| 237 | 235 99 | syl | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  ∧  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) )  →  ( 2nd  ‘ 𝑝 )  ∈  𝐵 ) | 
						
							| 238 |  | oveq1 | ⊢ ( 𝑥  =  ( 1st  ‘ 𝑝 )  →  ( 𝑥  +  𝑦 )  =  ( ( 1st  ‘ 𝑝 )  +  𝑦 ) ) | 
						
							| 239 | 238 | neeq1d | ⊢ ( 𝑥  =  ( 1st  ‘ 𝑝 )  →  ( ( 𝑥  +  𝑦 )  ≠  ( 0g ‘ 𝐾 )  ↔  ( ( 1st  ‘ 𝑝 )  +  𝑦 )  ≠  ( 0g ‘ 𝐾 ) ) ) | 
						
							| 240 |  | neeq1 | ⊢ ( 𝑥  =  ( 1st  ‘ 𝑝 )  →  ( 𝑥  ≠   0   ↔  ( 1st  ‘ 𝑝 )  ≠   0  ) ) | 
						
							| 241 | 240 | orbi1d | ⊢ ( 𝑥  =  ( 1st  ‘ 𝑝 )  →  ( ( 𝑥  ≠   0   ∨  𝑦  ≠   0  )  ↔  ( ( 1st  ‘ 𝑝 )  ≠   0   ∨  𝑦  ≠   0  ) ) ) | 
						
							| 242 | 239 241 | imbi12d | ⊢ ( 𝑥  =  ( 1st  ‘ 𝑝 )  →  ( ( ( 𝑥  +  𝑦 )  ≠  ( 0g ‘ 𝐾 )  →  ( 𝑥  ≠   0   ∨  𝑦  ≠   0  ) )  ↔  ( ( ( 1st  ‘ 𝑝 )  +  𝑦 )  ≠  ( 0g ‘ 𝐾 )  →  ( ( 1st  ‘ 𝑝 )  ≠   0   ∨  𝑦  ≠   0  ) ) ) ) | 
						
							| 243 |  | oveq2 | ⊢ ( 𝑦  =  ( 2nd  ‘ 𝑝 )  →  ( ( 1st  ‘ 𝑝 )  +  𝑦 )  =  ( ( 1st  ‘ 𝑝 )  +  ( 2nd  ‘ 𝑝 ) ) ) | 
						
							| 244 | 243 | neeq1d | ⊢ ( 𝑦  =  ( 2nd  ‘ 𝑝 )  →  ( ( ( 1st  ‘ 𝑝 )  +  𝑦 )  ≠  ( 0g ‘ 𝐾 )  ↔  ( ( 1st  ‘ 𝑝 )  +  ( 2nd  ‘ 𝑝 ) )  ≠  ( 0g ‘ 𝐾 ) ) ) | 
						
							| 245 |  | neeq1 | ⊢ ( 𝑦  =  ( 2nd  ‘ 𝑝 )  →  ( 𝑦  ≠   0   ↔  ( 2nd  ‘ 𝑝 )  ≠   0  ) ) | 
						
							| 246 | 245 | orbi2d | ⊢ ( 𝑦  =  ( 2nd  ‘ 𝑝 )  →  ( ( ( 1st  ‘ 𝑝 )  ≠   0   ∨  𝑦  ≠   0  )  ↔  ( ( 1st  ‘ 𝑝 )  ≠   0   ∨  ( 2nd  ‘ 𝑝 )  ≠   0  ) ) ) | 
						
							| 247 | 244 246 | imbi12d | ⊢ ( 𝑦  =  ( 2nd  ‘ 𝑝 )  →  ( ( ( ( 1st  ‘ 𝑝 )  +  𝑦 )  ≠  ( 0g ‘ 𝐾 )  →  ( ( 1st  ‘ 𝑝 )  ≠   0   ∨  𝑦  ≠   0  ) )  ↔  ( ( ( 1st  ‘ 𝑝 )  +  ( 2nd  ‘ 𝑝 ) )  ≠  ( 0g ‘ 𝐾 )  →  ( ( 1st  ‘ 𝑝 )  ≠   0   ∨  ( 2nd  ‘ 𝑝 )  ≠   0  ) ) ) ) | 
						
							| 248 | 242 247 | rspc2v | ⊢ ( ( ( 1st  ‘ 𝑝 )  ∈  𝐵  ∧  ( 2nd  ‘ 𝑝 )  ∈  𝐵 )  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑥  +  𝑦 )  ≠  ( 0g ‘ 𝐾 )  →  ( 𝑥  ≠   0   ∨  𝑦  ≠   0  ) )  →  ( ( ( 1st  ‘ 𝑝 )  +  ( 2nd  ‘ 𝑝 ) )  ≠  ( 0g ‘ 𝐾 )  →  ( ( 1st  ‘ 𝑝 )  ≠   0   ∨  ( 2nd  ‘ 𝑝 )  ≠   0  ) ) ) ) | 
						
							| 249 | 236 237 248 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  ∧  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) )  →  ( ∀ 𝑥  ∈  𝐵 ∀ 𝑦  ∈  𝐵 ( ( 𝑥  +  𝑦 )  ≠  ( 0g ‘ 𝐾 )  →  ( 𝑥  ≠   0   ∨  𝑦  ≠   0  ) )  →  ( ( ( 1st  ‘ 𝑝 )  +  ( 2nd  ‘ 𝑝 ) )  ≠  ( 0g ‘ 𝐾 )  →  ( ( 1st  ‘ 𝑝 )  ≠   0   ∨  ( 2nd  ‘ 𝑝 )  ≠   0  ) ) ) ) | 
						
							| 250 | 215 234 249 | mp2d | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  ∧  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) )  →  ( ( 1st  ‘ 𝑝 )  ≠   0   ∨  ( 2nd  ‘ 𝑝 )  ≠   0  ) ) | 
						
							| 251 | 1 2 3 4 5 6 7 8 9 13 11 15 | sibfinima | ⊢ ( ( ( 𝜑  ∧  ( 1st  ‘ 𝑝 )  ∈  ran  𝐹  ∧  ( 2nd  ‘ 𝑝 )  ∈  ran  𝐺 )  ∧  ( ( 1st  ‘ 𝑝 )  ≠   0   ∨  ( 2nd  ‘ 𝑝 )  ≠   0  ) )  →  ( 𝑀 ‘ ( ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∩  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 252 | 200 204 206 250 251 | syl31anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  ∧  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) )  →  ( 𝑀 ‘ ( ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∩  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 253 | 199 252 | esumpfinval | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  →  Σ* 𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) ( 𝑀 ‘ ( ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∩  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) ) )  =  Σ 𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) ( 𝑀 ‘ ( ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∩  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) ) ) ) | 
						
							| 254 | 172 196 253 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  →  ( 𝑀 ‘ ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑧 } ) )  =  Σ 𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) ( 𝑀 ‘ ( ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∩  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) ) ) ) | 
						
							| 255 |  | rge0ssre | ⊢ ( 0 [,) +∞ )  ⊆  ℝ | 
						
							| 256 | 255 252 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  ∧  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) )  →  ( 𝑀 ‘ ( ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∩  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) ) )  ∈  ℝ ) | 
						
							| 257 | 199 256 | fsumrecl | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  →  Σ 𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) ( 𝑀 ‘ ( ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∩  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) ) )  ∈  ℝ ) | 
						
							| 258 | 254 257 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  →  ( 𝑀 ‘ ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑧 } ) )  ∈  ℝ ) | 
						
							| 259 | 175 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  ∧  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) )  →  𝑀  ∈  ( measures ‘ dom  𝑀 ) ) | 
						
							| 260 | 176 109 | sylanl2 | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  ∧  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) )  →  ( ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∩  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) )  ∈  dom  𝑀 ) | 
						
							| 261 |  | measge0 | ⊢ ( ( 𝑀  ∈  ( measures ‘ dom  𝑀 )  ∧  ( ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∩  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) )  ∈  dom  𝑀 )  →  0  ≤  ( 𝑀 ‘ ( ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∩  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) ) ) ) | 
						
							| 262 | 259 260 261 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  ∧  𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) )  →  0  ≤  ( 𝑀 ‘ ( ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∩  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) ) ) ) | 
						
							| 263 | 199 256 262 | fsumge0 | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  →  0  ≤  Σ 𝑝  ∈  ( ( ◡  +   “  { 𝑧 } )  ∩  ( ran  𝐹  ×  ran  𝐺 ) ) ( 𝑀 ‘ ( ( ◡ 𝐹  “  { ( 1st  ‘ 𝑝 ) } )  ∩  ( ◡ 𝐺  “  { ( 2nd  ‘ 𝑝 ) } ) ) ) ) | 
						
							| 264 | 263 254 | breqtrrd | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  →  0  ≤  ( 𝑀 ‘ ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑧 } ) ) ) | 
						
							| 265 |  | elrege0 | ⊢ ( ( 𝑀 ‘ ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑧 } ) )  ∈  ( 0 [,) +∞ )  ↔  ( ( 𝑀 ‘ ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑧 } ) )  ∈  ℝ  ∧  0  ≤  ( 𝑀 ‘ ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑧 } ) ) ) ) | 
						
							| 266 | 258 264 265 | sylanbrc | ⊢ ( ( 𝜑  ∧  𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) )  →  ( 𝑀 ‘ ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑧 } ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 267 | 266 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) ( 𝑀 ‘ ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑧 } ) )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 268 |  | eqid | ⊢ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) )  =  ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) | 
						
							| 269 |  | eqid | ⊢ ( 0g ‘ 𝐾 )  =  ( 0g ‘ 𝐾 ) | 
						
							| 270 |  | eqid | ⊢ (  ·𝑠  ‘ 𝐾 )  =  (  ·𝑠  ‘ 𝐾 ) | 
						
							| 271 |  | eqid | ⊢ ( ℝHom ‘ ( Scalar ‘ 𝐾 ) )  =  ( ℝHom ‘ ( Scalar ‘ 𝐾 ) ) | 
						
							| 272 | 10 30 268 269 270 271 14 8 | issibf | ⊢ ( 𝜑  →  ( ( 𝐹  ∘f   +  𝐺 )  ∈  dom  ( 𝐾 sitg 𝑀 )  ↔  ( ( 𝐹  ∘f   +  𝐺 )  ∈  ( dom  𝑀 MblFnM ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) )  ∧  ran  ( 𝐹  ∘f   +  𝐺 )  ∈  Fin  ∧  ∀ 𝑧  ∈  ( ran  ( 𝐹  ∘f   +  𝐺 )  ∖  { ( 0g ‘ 𝐾 ) } ) ( 𝑀 ‘ ( ◡ ( 𝐹  ∘f   +  𝐺 )  “  { 𝑧 } ) )  ∈  ( 0 [,) +∞ ) ) ) ) | 
						
							| 273 | 170 138 267 272 | mpbir3and | ⊢ ( 𝜑  →  ( 𝐹  ∘f   +  𝐺 )  ∈  dom  ( 𝐾 sitg 𝑀 ) ) |