Metamath Proof Explorer


Theorem sibfof

Description: Applying function operations on simple functions results in simple functions with regard to the destination space, provided the operation fulfills a simple condition. (Contributed by Thierry Arnoux, 12-Mar-2018)

Ref Expression
Hypotheses sitgval.b 𝐵 = ( Base ‘ 𝑊 )
sitgval.j 𝐽 = ( TopOpen ‘ 𝑊 )
sitgval.s 𝑆 = ( sigaGen ‘ 𝐽 )
sitgval.0 0 = ( 0g𝑊 )
sitgval.x · = ( ·𝑠𝑊 )
sitgval.h 𝐻 = ( ℝHom ‘ ( Scalar ‘ 𝑊 ) )
sitgval.1 ( 𝜑𝑊𝑉 )
sitgval.2 ( 𝜑𝑀 ran measures )
sibfmbl.1 ( 𝜑𝐹 ∈ dom ( 𝑊 sitg 𝑀 ) )
sibfof.c 𝐶 = ( Base ‘ 𝐾 )
sibfof.0 ( 𝜑𝑊 ∈ TopSp )
sibfof.1 ( 𝜑+ : ( 𝐵 × 𝐵 ) ⟶ 𝐶 )
sibfof.2 ( 𝜑𝐺 ∈ dom ( 𝑊 sitg 𝑀 ) )
sibfof.3 ( 𝜑𝐾 ∈ TopSp )
sibfof.4 ( 𝜑𝐽 ∈ Fre )
sibfof.5 ( 𝜑 → ( 0 + 0 ) = ( 0g𝐾 ) )
Assertion sibfof ( 𝜑 → ( 𝐹f + 𝐺 ) ∈ dom ( 𝐾 sitg 𝑀 ) )

Proof

Step Hyp Ref Expression
1 sitgval.b 𝐵 = ( Base ‘ 𝑊 )
2 sitgval.j 𝐽 = ( TopOpen ‘ 𝑊 )
3 sitgval.s 𝑆 = ( sigaGen ‘ 𝐽 )
4 sitgval.0 0 = ( 0g𝑊 )
5 sitgval.x · = ( ·𝑠𝑊 )
6 sitgval.h 𝐻 = ( ℝHom ‘ ( Scalar ‘ 𝑊 ) )
7 sitgval.1 ( 𝜑𝑊𝑉 )
8 sitgval.2 ( 𝜑𝑀 ran measures )
9 sibfmbl.1 ( 𝜑𝐹 ∈ dom ( 𝑊 sitg 𝑀 ) )
10 sibfof.c 𝐶 = ( Base ‘ 𝐾 )
11 sibfof.0 ( 𝜑𝑊 ∈ TopSp )
12 sibfof.1 ( 𝜑+ : ( 𝐵 × 𝐵 ) ⟶ 𝐶 )
13 sibfof.2 ( 𝜑𝐺 ∈ dom ( 𝑊 sitg 𝑀 ) )
14 sibfof.3 ( 𝜑𝐾 ∈ TopSp )
15 sibfof.4 ( 𝜑𝐽 ∈ Fre )
16 sibfof.5 ( 𝜑 → ( 0 + 0 ) = ( 0g𝐾 ) )
17 1 2 tpsuni ( 𝑊 ∈ TopSp → 𝐵 = 𝐽 )
18 11 17 syl ( 𝜑𝐵 = 𝐽 )
19 18 sqxpeqd ( 𝜑 → ( 𝐵 × 𝐵 ) = ( 𝐽 × 𝐽 ) )
20 19 feq2d ( 𝜑 → ( + : ( 𝐵 × 𝐵 ) ⟶ 𝐶+ : ( 𝐽 × 𝐽 ) ⟶ 𝐶 ) )
21 12 20 mpbid ( 𝜑+ : ( 𝐽 × 𝐽 ) ⟶ 𝐶 )
22 21 fovrnda ( ( 𝜑 ∧ ( 𝑧 𝐽𝑥 𝐽 ) ) → ( 𝑧 + 𝑥 ) ∈ 𝐶 )
23 1 2 3 4 5 6 7 8 9 sibff ( 𝜑𝐹 : dom 𝑀 𝐽 )
24 1 2 3 4 5 6 7 8 13 sibff ( 𝜑𝐺 : dom 𝑀 𝐽 )
25 dmexg ( 𝑀 ran measures → dom 𝑀 ∈ V )
26 uniexg ( dom 𝑀 ∈ V → dom 𝑀 ∈ V )
27 8 25 26 3syl ( 𝜑 dom 𝑀 ∈ V )
28 inidm ( dom 𝑀 dom 𝑀 ) = dom 𝑀
29 22 23 24 27 27 28 off ( 𝜑 → ( 𝐹f + 𝐺 ) : dom 𝑀𝐶 )
30 eqid ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐾 )
31 10 30 tpsuni ( 𝐾 ∈ TopSp → 𝐶 = ( TopOpen ‘ 𝐾 ) )
32 14 31 syl ( 𝜑𝐶 = ( TopOpen ‘ 𝐾 ) )
33 fvex ( TopOpen ‘ 𝐾 ) ∈ V
34 unisg ( ( TopOpen ‘ 𝐾 ) ∈ V → ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) = ( TopOpen ‘ 𝐾 ) )
35 33 34 ax-mp ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) = ( TopOpen ‘ 𝐾 )
36 32 35 eqtr4di ( 𝜑𝐶 = ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) )
37 36 feq3d ( 𝜑 → ( ( 𝐹f + 𝐺 ) : dom 𝑀𝐶 ↔ ( 𝐹f + 𝐺 ) : dom 𝑀 ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) )
38 29 37 mpbid ( 𝜑 → ( 𝐹f + 𝐺 ) : dom 𝑀 ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) )
39 33 a1i ( 𝜑 → ( TopOpen ‘ 𝐾 ) ∈ V )
40 39 sgsiga ( 𝜑 → ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ∈ ran sigAlgebra )
41 40 uniexd ( 𝜑 ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ∈ V )
42 41 27 elmapd ( 𝜑 → ( ( 𝐹f + 𝐺 ) ∈ ( ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ↑m dom 𝑀 ) ↔ ( 𝐹f + 𝐺 ) : dom 𝑀 ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) )
43 38 42 mpbird ( 𝜑 → ( 𝐹f + 𝐺 ) ∈ ( ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ↑m dom 𝑀 ) )
44 inundif ( ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) ∪ ( 𝑏 ∖ ran ( 𝐹f + 𝐺 ) ) ) = 𝑏
45 44 imaeq2i ( ( 𝐹f + 𝐺 ) “ ( ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) ∪ ( 𝑏 ∖ ran ( 𝐹f + 𝐺 ) ) ) ) = ( ( 𝐹f + 𝐺 ) “ 𝑏 )
46 ffun ( ( 𝐹f + 𝐺 ) : dom 𝑀𝐶 → Fun ( 𝐹f + 𝐺 ) )
47 unpreima ( Fun ( 𝐹f + 𝐺 ) → ( ( 𝐹f + 𝐺 ) “ ( ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) ∪ ( 𝑏 ∖ ran ( 𝐹f + 𝐺 ) ) ) ) = ( ( ( 𝐹f + 𝐺 ) “ ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) ) ∪ ( ( 𝐹f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹f + 𝐺 ) ) ) ) )
48 29 46 47 3syl ( 𝜑 → ( ( 𝐹f + 𝐺 ) “ ( ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) ∪ ( 𝑏 ∖ ran ( 𝐹f + 𝐺 ) ) ) ) = ( ( ( 𝐹f + 𝐺 ) “ ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) ) ∪ ( ( 𝐹f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹f + 𝐺 ) ) ) ) )
49 48 adantr ( ( 𝜑𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) → ( ( 𝐹f + 𝐺 ) “ ( ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) ∪ ( 𝑏 ∖ ran ( 𝐹f + 𝐺 ) ) ) ) = ( ( ( 𝐹f + 𝐺 ) “ ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) ) ∪ ( ( 𝐹f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹f + 𝐺 ) ) ) ) )
50 45 49 eqtr3id ( ( 𝜑𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) → ( ( 𝐹f + 𝐺 ) “ 𝑏 ) = ( ( ( 𝐹f + 𝐺 ) “ ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) ) ∪ ( ( 𝐹f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹f + 𝐺 ) ) ) ) )
51 dmmeas ( 𝑀 ran measures → dom 𝑀 ran sigAlgebra )
52 8 51 syl ( 𝜑 → dom 𝑀 ran sigAlgebra )
53 52 adantr ( ( 𝜑𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) → dom 𝑀 ran sigAlgebra )
54 imaiun ( ( 𝐹f + 𝐺 ) “ 𝑧 ∈ ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) { 𝑧 } ) = 𝑧 ∈ ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) ( ( 𝐹f + 𝐺 ) “ { 𝑧 } )
55 iunid 𝑧 ∈ ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) { 𝑧 } = ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) )
56 55 imaeq2i ( ( 𝐹f + 𝐺 ) “ 𝑧 ∈ ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) { 𝑧 } ) = ( ( 𝐹f + 𝐺 ) “ ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) )
57 54 56 eqtr3i 𝑧 ∈ ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) ( ( 𝐹f + 𝐺 ) “ { 𝑧 } ) = ( ( 𝐹f + 𝐺 ) “ ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) )
58 inss2 ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) ⊆ ran ( 𝐹f + 𝐺 )
59 18 feq3d ( 𝜑 → ( 𝐹 : dom 𝑀𝐵𝐹 : dom 𝑀 𝐽 ) )
60 23 59 mpbird ( 𝜑𝐹 : dom 𝑀𝐵 )
61 18 feq3d ( 𝜑 → ( 𝐺 : dom 𝑀𝐵𝐺 : dom 𝑀 𝐽 ) )
62 24 61 mpbird ( 𝜑𝐺 : dom 𝑀𝐵 )
63 12 ffnd ( 𝜑+ Fn ( 𝐵 × 𝐵 ) )
64 60 62 27 63 ofpreima2 ( 𝜑 → ( ( 𝐹f + 𝐺 ) “ { 𝑧 } ) = 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( 𝐹 “ { ( 1st𝑝 ) } ) ∩ ( 𝐺 “ { ( 2nd𝑝 ) } ) ) )
65 64 adantr ( ( 𝜑𝑧 ∈ ran ( 𝐹f + 𝐺 ) ) → ( ( 𝐹f + 𝐺 ) “ { 𝑧 } ) = 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( 𝐹 “ { ( 1st𝑝 ) } ) ∩ ( 𝐺 “ { ( 2nd𝑝 ) } ) ) )
66 52 adantr ( ( 𝜑𝑧 ∈ ran ( 𝐹f + 𝐺 ) ) → dom 𝑀 ran sigAlgebra )
67 52 ad2antrr ( ( ( 𝜑𝑧 ∈ ran ( 𝐹f + 𝐺 ) ) ∧ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → dom 𝑀 ran sigAlgebra )
68 simpll ( ( ( 𝜑𝑧 ∈ ran ( 𝐹f + 𝐺 ) ) ∧ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 𝜑 )
69 inss1 ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ⊆ ( + “ { 𝑧 } )
70 cnvimass ( + “ { 𝑧 } ) ⊆ dom +
71 70 12 fssdm ( 𝜑 → ( + “ { 𝑧 } ) ⊆ ( 𝐵 × 𝐵 ) )
72 71 adantr ( ( 𝜑𝑧 ∈ ran ( 𝐹f + 𝐺 ) ) → ( + “ { 𝑧 } ) ⊆ ( 𝐵 × 𝐵 ) )
73 69 72 sstrid ( ( 𝜑𝑧 ∈ ran ( 𝐹f + 𝐺 ) ) → ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ⊆ ( 𝐵 × 𝐵 ) )
74 73 sselda ( ( ( 𝜑𝑧 ∈ ran ( 𝐹f + 𝐺 ) ) ∧ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 𝑝 ∈ ( 𝐵 × 𝐵 ) )
75 52 adantr ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝐵 ) ) → dom 𝑀 ran sigAlgebra )
76 15 sgsiga ( 𝜑 → ( sigaGen ‘ 𝐽 ) ∈ ran sigAlgebra )
77 3 76 eqeltrid ( 𝜑𝑆 ran sigAlgebra )
78 77 adantr ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝐵 ) ) → 𝑆 ran sigAlgebra )
79 1 2 3 4 5 6 7 8 9 sibfmbl ( 𝜑𝐹 ∈ ( dom 𝑀 MblFnM 𝑆 ) )
80 79 adantr ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝐵 ) ) → 𝐹 ∈ ( dom 𝑀 MblFnM 𝑆 ) )
81 2 tpstop ( 𝑊 ∈ TopSp → 𝐽 ∈ Top )
82 cldssbrsiga ( 𝐽 ∈ Top → ( Clsd ‘ 𝐽 ) ⊆ ( sigaGen ‘ 𝐽 ) )
83 11 81 82 3syl ( 𝜑 → ( Clsd ‘ 𝐽 ) ⊆ ( sigaGen ‘ 𝐽 ) )
84 83 adantr ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝐵 ) ) → ( Clsd ‘ 𝐽 ) ⊆ ( sigaGen ‘ 𝐽 ) )
85 15 adantr ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝐵 ) ) → 𝐽 ∈ Fre )
86 xp1st ( 𝑝 ∈ ( 𝐵 × 𝐵 ) → ( 1st𝑝 ) ∈ 𝐵 )
87 86 adantl ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝐵 ) ) → ( 1st𝑝 ) ∈ 𝐵 )
88 18 adantr ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝐵 ) ) → 𝐵 = 𝐽 )
89 87 88 eleqtrd ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝐵 ) ) → ( 1st𝑝 ) ∈ 𝐽 )
90 eqid 𝐽 = 𝐽
91 90 t1sncld ( ( 𝐽 ∈ Fre ∧ ( 1st𝑝 ) ∈ 𝐽 ) → { ( 1st𝑝 ) } ∈ ( Clsd ‘ 𝐽 ) )
92 85 89 91 syl2anc ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝐵 ) ) → { ( 1st𝑝 ) } ∈ ( Clsd ‘ 𝐽 ) )
93 84 92 sseldd ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝐵 ) ) → { ( 1st𝑝 ) } ∈ ( sigaGen ‘ 𝐽 ) )
94 93 3 eleqtrrdi ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝐵 ) ) → { ( 1st𝑝 ) } ∈ 𝑆 )
95 75 78 80 94 mbfmcnvima ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝐵 ) ) → ( 𝐹 “ { ( 1st𝑝 ) } ) ∈ dom 𝑀 )
96 68 74 95 syl2anc ( ( ( 𝜑𝑧 ∈ ran ( 𝐹f + 𝐺 ) ) ∧ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( 𝐹 “ { ( 1st𝑝 ) } ) ∈ dom 𝑀 )
97 1 2 3 4 5 6 7 8 13 sibfmbl ( 𝜑𝐺 ∈ ( dom 𝑀 MblFnM 𝑆 ) )
98 97 adantr ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝐵 ) ) → 𝐺 ∈ ( dom 𝑀 MblFnM 𝑆 ) )
99 xp2nd ( 𝑝 ∈ ( 𝐵 × 𝐵 ) → ( 2nd𝑝 ) ∈ 𝐵 )
100 99 adantl ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝐵 ) ) → ( 2nd𝑝 ) ∈ 𝐵 )
101 100 88 eleqtrd ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝐵 ) ) → ( 2nd𝑝 ) ∈ 𝐽 )
102 90 t1sncld ( ( 𝐽 ∈ Fre ∧ ( 2nd𝑝 ) ∈ 𝐽 ) → { ( 2nd𝑝 ) } ∈ ( Clsd ‘ 𝐽 ) )
103 85 101 102 syl2anc ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝐵 ) ) → { ( 2nd𝑝 ) } ∈ ( Clsd ‘ 𝐽 ) )
104 84 103 sseldd ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝐵 ) ) → { ( 2nd𝑝 ) } ∈ ( sigaGen ‘ 𝐽 ) )
105 104 3 eleqtrrdi ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝐵 ) ) → { ( 2nd𝑝 ) } ∈ 𝑆 )
106 75 78 98 105 mbfmcnvima ( ( 𝜑𝑝 ∈ ( 𝐵 × 𝐵 ) ) → ( 𝐺 “ { ( 2nd𝑝 ) } ) ∈ dom 𝑀 )
107 68 74 106 syl2anc ( ( ( 𝜑𝑧 ∈ ran ( 𝐹f + 𝐺 ) ) ∧ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( 𝐺 “ { ( 2nd𝑝 ) } ) ∈ dom 𝑀 )
108 inelsiga ( ( dom 𝑀 ran sigAlgebra ∧ ( 𝐹 “ { ( 1st𝑝 ) } ) ∈ dom 𝑀 ∧ ( 𝐺 “ { ( 2nd𝑝 ) } ) ∈ dom 𝑀 ) → ( ( 𝐹 “ { ( 1st𝑝 ) } ) ∩ ( 𝐺 “ { ( 2nd𝑝 ) } ) ) ∈ dom 𝑀 )
109 67 96 107 108 syl3anc ( ( ( 𝜑𝑧 ∈ ran ( 𝐹f + 𝐺 ) ) ∧ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( ( 𝐹 “ { ( 1st𝑝 ) } ) ∩ ( 𝐺 “ { ( 2nd𝑝 ) } ) ) ∈ dom 𝑀 )
110 109 ralrimiva ( ( 𝜑𝑧 ∈ ran ( 𝐹f + 𝐺 ) ) → ∀ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( 𝐹 “ { ( 1st𝑝 ) } ) ∩ ( 𝐺 “ { ( 2nd𝑝 ) } ) ) ∈ dom 𝑀 )
111 1 2 3 4 5 6 7 8 9 sibfrn ( 𝜑 → ran 𝐹 ∈ Fin )
112 1 2 3 4 5 6 7 8 13 sibfrn ( 𝜑 → ran 𝐺 ∈ Fin )
113 xpfi ( ( ran 𝐹 ∈ Fin ∧ ran 𝐺 ∈ Fin ) → ( ran 𝐹 × ran 𝐺 ) ∈ Fin )
114 111 112 113 syl2anc ( 𝜑 → ( ran 𝐹 × ran 𝐺 ) ∈ Fin )
115 inss2 ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ⊆ ( ran 𝐹 × ran 𝐺 )
116 ssdomg ( ( ran 𝐹 × ran 𝐺 ) ∈ Fin → ( ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ⊆ ( ran 𝐹 × ran 𝐺 ) → ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ≼ ( ran 𝐹 × ran 𝐺 ) ) )
117 114 115 116 mpisyl ( 𝜑 → ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ≼ ( ran 𝐹 × ran 𝐺 ) )
118 isfinite ( ( ran 𝐹 × ran 𝐺 ) ∈ Fin ↔ ( ran 𝐹 × ran 𝐺 ) ≺ ω )
119 118 biimpi ( ( ran 𝐹 × ran 𝐺 ) ∈ Fin → ( ran 𝐹 × ran 𝐺 ) ≺ ω )
120 sdomdom ( ( ran 𝐹 × ran 𝐺 ) ≺ ω → ( ran 𝐹 × ran 𝐺 ) ≼ ω )
121 114 119 120 3syl ( 𝜑 → ( ran 𝐹 × ran 𝐺 ) ≼ ω )
122 domtr ( ( ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ≼ ( ran 𝐹 × ran 𝐺 ) ∧ ( ran 𝐹 × ran 𝐺 ) ≼ ω ) → ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ≼ ω )
123 117 121 122 syl2anc ( 𝜑 → ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ≼ ω )
124 123 adantr ( ( 𝜑𝑧 ∈ ran ( 𝐹f + 𝐺 ) ) → ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ≼ ω )
125 nfcv 𝑝 ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) )
126 125 sigaclcuni ( ( dom 𝑀 ran sigAlgebra ∧ ∀ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( 𝐹 “ { ( 1st𝑝 ) } ) ∩ ( 𝐺 “ { ( 2nd𝑝 ) } ) ) ∈ dom 𝑀 ∧ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ≼ ω ) → 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( 𝐹 “ { ( 1st𝑝 ) } ) ∩ ( 𝐺 “ { ( 2nd𝑝 ) } ) ) ∈ dom 𝑀 )
127 66 110 124 126 syl3anc ( ( 𝜑𝑧 ∈ ran ( 𝐹f + 𝐺 ) ) → 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( 𝐹 “ { ( 1st𝑝 ) } ) ∩ ( 𝐺 “ { ( 2nd𝑝 ) } ) ) ∈ dom 𝑀 )
128 65 127 eqeltrd ( ( 𝜑𝑧 ∈ ran ( 𝐹f + 𝐺 ) ) → ( ( 𝐹f + 𝐺 ) “ { 𝑧 } ) ∈ dom 𝑀 )
129 128 ralrimiva ( 𝜑 → ∀ 𝑧 ∈ ran ( 𝐹f + 𝐺 ) ( ( 𝐹f + 𝐺 ) “ { 𝑧 } ) ∈ dom 𝑀 )
130 ssralv ( ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) ⊆ ran ( 𝐹f + 𝐺 ) → ( ∀ 𝑧 ∈ ran ( 𝐹f + 𝐺 ) ( ( 𝐹f + 𝐺 ) “ { 𝑧 } ) ∈ dom 𝑀 → ∀ 𝑧 ∈ ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) ( ( 𝐹f + 𝐺 ) “ { 𝑧 } ) ∈ dom 𝑀 ) )
131 58 129 130 mpsyl ( 𝜑 → ∀ 𝑧 ∈ ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) ( ( 𝐹f + 𝐺 ) “ { 𝑧 } ) ∈ dom 𝑀 )
132 131 adantr ( ( 𝜑𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) → ∀ 𝑧 ∈ ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) ( ( 𝐹f + 𝐺 ) “ { 𝑧 } ) ∈ dom 𝑀 )
133 12 ffund ( 𝜑 → Fun + )
134 imafi ( ( Fun + ∧ ( ran 𝐹 × ran 𝐺 ) ∈ Fin ) → ( + “ ( ran 𝐹 × ran 𝐺 ) ) ∈ Fin )
135 133 114 134 syl2anc ( 𝜑 → ( + “ ( ran 𝐹 × ran 𝐺 ) ) ∈ Fin )
136 23 24 21 27 ofrn2 ( 𝜑 → ran ( 𝐹f + 𝐺 ) ⊆ ( + “ ( ran 𝐹 × ran 𝐺 ) ) )
137 ssfi ( ( ( + “ ( ran 𝐹 × ran 𝐺 ) ) ∈ Fin ∧ ran ( 𝐹f + 𝐺 ) ⊆ ( + “ ( ran 𝐹 × ran 𝐺 ) ) ) → ran ( 𝐹f + 𝐺 ) ∈ Fin )
138 135 136 137 syl2anc ( 𝜑 → ran ( 𝐹f + 𝐺 ) ∈ Fin )
139 ssdomg ( ran ( 𝐹f + 𝐺 ) ∈ Fin → ( ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) ⊆ ran ( 𝐹f + 𝐺 ) → ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) ≼ ran ( 𝐹f + 𝐺 ) ) )
140 138 58 139 mpisyl ( 𝜑 → ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) ≼ ran ( 𝐹f + 𝐺 ) )
141 isfinite ( ran ( 𝐹f + 𝐺 ) ∈ Fin ↔ ran ( 𝐹f + 𝐺 ) ≺ ω )
142 138 141 sylib ( 𝜑 → ran ( 𝐹f + 𝐺 ) ≺ ω )
143 sdomdom ( ran ( 𝐹f + 𝐺 ) ≺ ω → ran ( 𝐹f + 𝐺 ) ≼ ω )
144 142 143 syl ( 𝜑 → ran ( 𝐹f + 𝐺 ) ≼ ω )
145 domtr ( ( ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) ≼ ran ( 𝐹f + 𝐺 ) ∧ ran ( 𝐹f + 𝐺 ) ≼ ω ) → ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) ≼ ω )
146 140 144 145 syl2anc ( 𝜑 → ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) ≼ ω )
147 146 adantr ( ( 𝜑𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) → ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) ≼ ω )
148 nfcv 𝑧 ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) )
149 148 sigaclcuni ( ( dom 𝑀 ran sigAlgebra ∧ ∀ 𝑧 ∈ ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) ( ( 𝐹f + 𝐺 ) “ { 𝑧 } ) ∈ dom 𝑀 ∧ ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) ≼ ω ) → 𝑧 ∈ ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) ( ( 𝐹f + 𝐺 ) “ { 𝑧 } ) ∈ dom 𝑀 )
150 53 132 147 149 syl3anc ( ( 𝜑𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) → 𝑧 ∈ ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) ( ( 𝐹f + 𝐺 ) “ { 𝑧 } ) ∈ dom 𝑀 )
151 57 150 eqeltrrid ( ( 𝜑𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) → ( ( 𝐹f + 𝐺 ) “ ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) ) ∈ dom 𝑀 )
152 difpreima ( Fun ( 𝐹f + 𝐺 ) → ( ( 𝐹f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹f + 𝐺 ) ) ) = ( ( ( 𝐹f + 𝐺 ) “ 𝑏 ) ∖ ( ( 𝐹f + 𝐺 ) “ ran ( 𝐹f + 𝐺 ) ) ) )
153 29 46 152 3syl ( 𝜑 → ( ( 𝐹f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹f + 𝐺 ) ) ) = ( ( ( 𝐹f + 𝐺 ) “ 𝑏 ) ∖ ( ( 𝐹f + 𝐺 ) “ ran ( 𝐹f + 𝐺 ) ) ) )
154 cnvimarndm ( ( 𝐹f + 𝐺 ) “ ran ( 𝐹f + 𝐺 ) ) = dom ( 𝐹f + 𝐺 )
155 154 difeq2i ( ( ( 𝐹f + 𝐺 ) “ 𝑏 ) ∖ ( ( 𝐹f + 𝐺 ) “ ran ( 𝐹f + 𝐺 ) ) ) = ( ( ( 𝐹f + 𝐺 ) “ 𝑏 ) ∖ dom ( 𝐹f + 𝐺 ) )
156 cnvimass ( ( 𝐹f + 𝐺 ) “ 𝑏 ) ⊆ dom ( 𝐹f + 𝐺 )
157 ssdif0 ( ( ( 𝐹f + 𝐺 ) “ 𝑏 ) ⊆ dom ( 𝐹f + 𝐺 ) ↔ ( ( ( 𝐹f + 𝐺 ) “ 𝑏 ) ∖ dom ( 𝐹f + 𝐺 ) ) = ∅ )
158 156 157 mpbi ( ( ( 𝐹f + 𝐺 ) “ 𝑏 ) ∖ dom ( 𝐹f + 𝐺 ) ) = ∅
159 155 158 eqtri ( ( ( 𝐹f + 𝐺 ) “ 𝑏 ) ∖ ( ( 𝐹f + 𝐺 ) “ ran ( 𝐹f + 𝐺 ) ) ) = ∅
160 153 159 eqtrdi ( 𝜑 → ( ( 𝐹f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹f + 𝐺 ) ) ) = ∅ )
161 0elsiga ( dom 𝑀 ran sigAlgebra → ∅ ∈ dom 𝑀 )
162 8 51 161 3syl ( 𝜑 → ∅ ∈ dom 𝑀 )
163 160 162 eqeltrd ( 𝜑 → ( ( 𝐹f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹f + 𝐺 ) ) ) ∈ dom 𝑀 )
164 163 adantr ( ( 𝜑𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) → ( ( 𝐹f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹f + 𝐺 ) ) ) ∈ dom 𝑀 )
165 unelsiga ( ( dom 𝑀 ran sigAlgebra ∧ ( ( 𝐹f + 𝐺 ) “ ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) ) ∈ dom 𝑀 ∧ ( ( 𝐹f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹f + 𝐺 ) ) ) ∈ dom 𝑀 ) → ( ( ( 𝐹f + 𝐺 ) “ ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) ) ∪ ( ( 𝐹f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹f + 𝐺 ) ) ) ) ∈ dom 𝑀 )
166 53 151 164 165 syl3anc ( ( 𝜑𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) → ( ( ( 𝐹f + 𝐺 ) “ ( 𝑏 ∩ ran ( 𝐹f + 𝐺 ) ) ) ∪ ( ( 𝐹f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹f + 𝐺 ) ) ) ) ∈ dom 𝑀 )
167 50 166 eqeltrd ( ( 𝜑𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) → ( ( 𝐹f + 𝐺 ) “ 𝑏 ) ∈ dom 𝑀 )
168 167 ralrimiva ( 𝜑 → ∀ 𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ( ( 𝐹f + 𝐺 ) “ 𝑏 ) ∈ dom 𝑀 )
169 52 40 ismbfm ( 𝜑 → ( ( 𝐹f + 𝐺 ) ∈ ( dom 𝑀 MblFnM ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) ↔ ( ( 𝐹f + 𝐺 ) ∈ ( ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ↑m dom 𝑀 ) ∧ ∀ 𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ( ( 𝐹f + 𝐺 ) “ 𝑏 ) ∈ dom 𝑀 ) ) )
170 43 168 169 mpbir2and ( 𝜑 → ( 𝐹f + 𝐺 ) ∈ ( dom 𝑀 MblFnM ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) )
171 64 adantr ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) → ( ( 𝐹f + 𝐺 ) “ { 𝑧 } ) = 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( 𝐹 “ { ( 1st𝑝 ) } ) ∩ ( 𝐺 “ { ( 2nd𝑝 ) } ) ) )
172 171 fveq2d ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) → ( 𝑀 ‘ ( ( 𝐹f + 𝐺 ) “ { 𝑧 } ) ) = ( 𝑀 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( 𝐹 “ { ( 1st𝑝 ) } ) ∩ ( 𝐺 “ { ( 2nd𝑝 ) } ) ) ) )
173 measbasedom ( 𝑀 ran measures ↔ 𝑀 ∈ ( measures ‘ dom 𝑀 ) )
174 8 173 sylib ( 𝜑𝑀 ∈ ( measures ‘ dom 𝑀 ) )
175 174 adantr ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) → 𝑀 ∈ ( measures ‘ dom 𝑀 ) )
176 eldifi ( 𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) → 𝑧 ∈ ran ( 𝐹f + 𝐺 ) )
177 176 110 sylan2 ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) → ∀ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( 𝐹 “ { ( 1st𝑝 ) } ) ∩ ( 𝐺 “ { ( 2nd𝑝 ) } ) ) ∈ dom 𝑀 )
178 123 adantr ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) → ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ≼ ω )
179 sneq ( 𝑥 = ( 1st𝑝 ) → { 𝑥 } = { ( 1st𝑝 ) } )
180 179 imaeq2d ( 𝑥 = ( 1st𝑝 ) → ( 𝐹 “ { 𝑥 } ) = ( 𝐹 “ { ( 1st𝑝 ) } ) )
181 sneq ( 𝑦 = ( 2nd𝑝 ) → { 𝑦 } = { ( 2nd𝑝 ) } )
182 181 imaeq2d ( 𝑦 = ( 2nd𝑝 ) → ( 𝐺 “ { 𝑦 } ) = ( 𝐺 “ { ( 2nd𝑝 ) } ) )
183 23 ffund ( 𝜑 → Fun 𝐹 )
184 sndisj Disj 𝑥 ∈ ran 𝐹 { 𝑥 }
185 disjpreima ( ( Fun 𝐹Disj 𝑥 ∈ ran 𝐹 { 𝑥 } ) → Disj 𝑥 ∈ ran 𝐹 ( 𝐹 “ { 𝑥 } ) )
186 183 184 185 sylancl ( 𝜑Disj 𝑥 ∈ ran 𝐹 ( 𝐹 “ { 𝑥 } ) )
187 24 ffund ( 𝜑 → Fun 𝐺 )
188 sndisj Disj 𝑦 ∈ ran 𝐺 { 𝑦 }
189 disjpreima ( ( Fun 𝐺Disj 𝑦 ∈ ran 𝐺 { 𝑦 } ) → Disj 𝑦 ∈ ran 𝐺 ( 𝐺 “ { 𝑦 } ) )
190 187 188 189 sylancl ( 𝜑Disj 𝑦 ∈ ran 𝐺 ( 𝐺 “ { 𝑦 } ) )
191 180 182 186 190 disjxpin ( 𝜑Disj 𝑝 ∈ ( ran 𝐹 × ran 𝐺 ) ( ( 𝐹 “ { ( 1st𝑝 ) } ) ∩ ( 𝐺 “ { ( 2nd𝑝 ) } ) ) )
192 disjss1 ( ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ⊆ ( ran 𝐹 × ran 𝐺 ) → ( Disj 𝑝 ∈ ( ran 𝐹 × ran 𝐺 ) ( ( 𝐹 “ { ( 1st𝑝 ) } ) ∩ ( 𝐺 “ { ( 2nd𝑝 ) } ) ) → Disj 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( 𝐹 “ { ( 1st𝑝 ) } ) ∩ ( 𝐺 “ { ( 2nd𝑝 ) } ) ) ) )
193 115 191 192 mpsyl ( 𝜑Disj 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( 𝐹 “ { ( 1st𝑝 ) } ) ∩ ( 𝐺 “ { ( 2nd𝑝 ) } ) ) )
194 193 adantr ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) → Disj 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( 𝐹 “ { ( 1st𝑝 ) } ) ∩ ( 𝐺 “ { ( 2nd𝑝 ) } ) ) )
195 measvuni ( ( 𝑀 ∈ ( measures ‘ dom 𝑀 ) ∧ ∀ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( 𝐹 “ { ( 1st𝑝 ) } ) ∩ ( 𝐺 “ { ( 2nd𝑝 ) } ) ) ∈ dom 𝑀 ∧ ( ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ≼ ω ∧ Disj 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( 𝐹 “ { ( 1st𝑝 ) } ) ∩ ( 𝐺 “ { ( 2nd𝑝 ) } ) ) ) ) → ( 𝑀 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( 𝐹 “ { ( 1st𝑝 ) } ) ∩ ( 𝐺 “ { ( 2nd𝑝 ) } ) ) ) = Σ* 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( 𝑀 ‘ ( ( 𝐹 “ { ( 1st𝑝 ) } ) ∩ ( 𝐺 “ { ( 2nd𝑝 ) } ) ) ) )
196 175 177 178 194 195 syl112anc ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) → ( 𝑀 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( 𝐹 “ { ( 1st𝑝 ) } ) ∩ ( 𝐺 “ { ( 2nd𝑝 ) } ) ) ) = Σ* 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( 𝑀 ‘ ( ( 𝐹 “ { ( 1st𝑝 ) } ) ∩ ( 𝐺 “ { ( 2nd𝑝 ) } ) ) ) )
197 ssfi ( ( ( ran 𝐹 × ran 𝐺 ) ∈ Fin ∧ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ⊆ ( ran 𝐹 × ran 𝐺 ) ) → ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ∈ Fin )
198 114 115 197 sylancl ( 𝜑 → ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ∈ Fin )
199 198 adantr ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) → ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ∈ Fin )
200 simpll ( ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 𝜑 )
201 simpr ( ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) )
202 115 201 sseldi ( ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 𝑝 ∈ ( ran 𝐹 × ran 𝐺 ) )
203 xp1st ( 𝑝 ∈ ( ran 𝐹 × ran 𝐺 ) → ( 1st𝑝 ) ∈ ran 𝐹 )
204 202 203 syl ( ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( 1st𝑝 ) ∈ ran 𝐹 )
205 xp2nd ( 𝑝 ∈ ( ran 𝐹 × ran 𝐺 ) → ( 2nd𝑝 ) ∈ ran 𝐺 )
206 202 205 syl ( ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( 2nd𝑝 ) ∈ ran 𝐺 )
207 oveq12 ( ( 𝑥 = 0𝑦 = 0 ) → ( 𝑥 + 𝑦 ) = ( 0 + 0 ) )
208 207 16 sylan9eqr ( ( 𝜑 ∧ ( 𝑥 = 0𝑦 = 0 ) ) → ( 𝑥 + 𝑦 ) = ( 0g𝐾 ) )
209 208 ex ( 𝜑 → ( ( 𝑥 = 0𝑦 = 0 ) → ( 𝑥 + 𝑦 ) = ( 0g𝐾 ) ) )
210 209 necon3ad ( 𝜑 → ( ( 𝑥 + 𝑦 ) ≠ ( 0g𝐾 ) → ¬ ( 𝑥 = 0𝑦 = 0 ) ) )
211 neorian ( ( 𝑥0𝑦0 ) ↔ ¬ ( 𝑥 = 0𝑦 = 0 ) )
212 210 211 syl6ibr ( 𝜑 → ( ( 𝑥 + 𝑦 ) ≠ ( 0g𝐾 ) → ( 𝑥0𝑦0 ) ) )
213 212 adantr ( ( 𝜑 ∧ ( 𝑥𝐵𝑦𝐵 ) ) → ( ( 𝑥 + 𝑦 ) ≠ ( 0g𝐾 ) → ( 𝑥0𝑦0 ) ) )
214 213 ralrimivva ( 𝜑 → ∀ 𝑥𝐵𝑦𝐵 ( ( 𝑥 + 𝑦 ) ≠ ( 0g𝐾 ) → ( 𝑥0𝑦0 ) ) )
215 200 214 syl ( ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ∀ 𝑥𝐵𝑦𝐵 ( ( 𝑥 + 𝑦 ) ≠ ( 0g𝐾 ) → ( 𝑥0𝑦0 ) ) )
216 69 a1i ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) → ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ⊆ ( + “ { 𝑧 } ) )
217 216 sselda ( ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 𝑝 ∈ ( + “ { 𝑧 } ) )
218 fniniseg ( + Fn ( 𝐵 × 𝐵 ) → ( 𝑝 ∈ ( + “ { 𝑧 } ) ↔ ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ∧ ( +𝑝 ) = 𝑧 ) ) )
219 200 63 218 3syl ( ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( 𝑝 ∈ ( + “ { 𝑧 } ) ↔ ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ∧ ( +𝑝 ) = 𝑧 ) ) )
220 217 219 mpbid ( ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ∧ ( +𝑝 ) = 𝑧 ) )
221 simpr ( ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ∧ ( +𝑝 ) = 𝑧 ) → ( +𝑝 ) = 𝑧 )
222 1st2nd2 ( 𝑝 ∈ ( 𝐵 × 𝐵 ) → 𝑝 = ⟨ ( 1st𝑝 ) , ( 2nd𝑝 ) ⟩ )
223 222 fveq2d ( 𝑝 ∈ ( 𝐵 × 𝐵 ) → ( +𝑝 ) = ( + ‘ ⟨ ( 1st𝑝 ) , ( 2nd𝑝 ) ⟩ ) )
224 df-ov ( ( 1st𝑝 ) + ( 2nd𝑝 ) ) = ( + ‘ ⟨ ( 1st𝑝 ) , ( 2nd𝑝 ) ⟩ )
225 223 224 eqtr4di ( 𝑝 ∈ ( 𝐵 × 𝐵 ) → ( +𝑝 ) = ( ( 1st𝑝 ) + ( 2nd𝑝 ) ) )
226 225 adantr ( ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ∧ ( +𝑝 ) = 𝑧 ) → ( +𝑝 ) = ( ( 1st𝑝 ) + ( 2nd𝑝 ) ) )
227 221 226 eqtr3d ( ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ∧ ( +𝑝 ) = 𝑧 ) → 𝑧 = ( ( 1st𝑝 ) + ( 2nd𝑝 ) ) )
228 220 227 syl ( ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 𝑧 = ( ( 1st𝑝 ) + ( 2nd𝑝 ) ) )
229 simplr ( ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) )
230 229 eldifbd ( ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ¬ 𝑧 ∈ { ( 0g𝐾 ) } )
231 velsn ( 𝑧 ∈ { ( 0g𝐾 ) } ↔ 𝑧 = ( 0g𝐾 ) )
232 231 necon3bbii ( ¬ 𝑧 ∈ { ( 0g𝐾 ) } ↔ 𝑧 ≠ ( 0g𝐾 ) )
233 230 232 sylib ( ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 𝑧 ≠ ( 0g𝐾 ) )
234 228 233 eqnetrrd ( ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( ( 1st𝑝 ) + ( 2nd𝑝 ) ) ≠ ( 0g𝐾 ) )
235 176 74 sylanl2 ( ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 𝑝 ∈ ( 𝐵 × 𝐵 ) )
236 235 86 syl ( ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( 1st𝑝 ) ∈ 𝐵 )
237 235 99 syl ( ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( 2nd𝑝 ) ∈ 𝐵 )
238 oveq1 ( 𝑥 = ( 1st𝑝 ) → ( 𝑥 + 𝑦 ) = ( ( 1st𝑝 ) + 𝑦 ) )
239 238 neeq1d ( 𝑥 = ( 1st𝑝 ) → ( ( 𝑥 + 𝑦 ) ≠ ( 0g𝐾 ) ↔ ( ( 1st𝑝 ) + 𝑦 ) ≠ ( 0g𝐾 ) ) )
240 neeq1 ( 𝑥 = ( 1st𝑝 ) → ( 𝑥0 ↔ ( 1st𝑝 ) ≠ 0 ) )
241 240 orbi1d ( 𝑥 = ( 1st𝑝 ) → ( ( 𝑥0𝑦0 ) ↔ ( ( 1st𝑝 ) ≠ 0𝑦0 ) ) )
242 239 241 imbi12d ( 𝑥 = ( 1st𝑝 ) → ( ( ( 𝑥 + 𝑦 ) ≠ ( 0g𝐾 ) → ( 𝑥0𝑦0 ) ) ↔ ( ( ( 1st𝑝 ) + 𝑦 ) ≠ ( 0g𝐾 ) → ( ( 1st𝑝 ) ≠ 0𝑦0 ) ) ) )
243 oveq2 ( 𝑦 = ( 2nd𝑝 ) → ( ( 1st𝑝 ) + 𝑦 ) = ( ( 1st𝑝 ) + ( 2nd𝑝 ) ) )
244 243 neeq1d ( 𝑦 = ( 2nd𝑝 ) → ( ( ( 1st𝑝 ) + 𝑦 ) ≠ ( 0g𝐾 ) ↔ ( ( 1st𝑝 ) + ( 2nd𝑝 ) ) ≠ ( 0g𝐾 ) ) )
245 neeq1 ( 𝑦 = ( 2nd𝑝 ) → ( 𝑦0 ↔ ( 2nd𝑝 ) ≠ 0 ) )
246 245 orbi2d ( 𝑦 = ( 2nd𝑝 ) → ( ( ( 1st𝑝 ) ≠ 0𝑦0 ) ↔ ( ( 1st𝑝 ) ≠ 0 ∨ ( 2nd𝑝 ) ≠ 0 ) ) )
247 244 246 imbi12d ( 𝑦 = ( 2nd𝑝 ) → ( ( ( ( 1st𝑝 ) + 𝑦 ) ≠ ( 0g𝐾 ) → ( ( 1st𝑝 ) ≠ 0𝑦0 ) ) ↔ ( ( ( 1st𝑝 ) + ( 2nd𝑝 ) ) ≠ ( 0g𝐾 ) → ( ( 1st𝑝 ) ≠ 0 ∨ ( 2nd𝑝 ) ≠ 0 ) ) ) )
248 242 247 rspc2v ( ( ( 1st𝑝 ) ∈ 𝐵 ∧ ( 2nd𝑝 ) ∈ 𝐵 ) → ( ∀ 𝑥𝐵𝑦𝐵 ( ( 𝑥 + 𝑦 ) ≠ ( 0g𝐾 ) → ( 𝑥0𝑦0 ) ) → ( ( ( 1st𝑝 ) + ( 2nd𝑝 ) ) ≠ ( 0g𝐾 ) → ( ( 1st𝑝 ) ≠ 0 ∨ ( 2nd𝑝 ) ≠ 0 ) ) ) )
249 236 237 248 syl2anc ( ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( ∀ 𝑥𝐵𝑦𝐵 ( ( 𝑥 + 𝑦 ) ≠ ( 0g𝐾 ) → ( 𝑥0𝑦0 ) ) → ( ( ( 1st𝑝 ) + ( 2nd𝑝 ) ) ≠ ( 0g𝐾 ) → ( ( 1st𝑝 ) ≠ 0 ∨ ( 2nd𝑝 ) ≠ 0 ) ) ) )
250 215 234 249 mp2d ( ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( ( 1st𝑝 ) ≠ 0 ∨ ( 2nd𝑝 ) ≠ 0 ) )
251 1 2 3 4 5 6 7 8 9 13 11 15 sibfinima ( ( ( 𝜑 ∧ ( 1st𝑝 ) ∈ ran 𝐹 ∧ ( 2nd𝑝 ) ∈ ran 𝐺 ) ∧ ( ( 1st𝑝 ) ≠ 0 ∨ ( 2nd𝑝 ) ≠ 0 ) ) → ( 𝑀 ‘ ( ( 𝐹 “ { ( 1st𝑝 ) } ) ∩ ( 𝐺 “ { ( 2nd𝑝 ) } ) ) ) ∈ ( 0 [,) +∞ ) )
252 200 204 206 250 251 syl31anc ( ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( 𝑀 ‘ ( ( 𝐹 “ { ( 1st𝑝 ) } ) ∩ ( 𝐺 “ { ( 2nd𝑝 ) } ) ) ) ∈ ( 0 [,) +∞ ) )
253 199 252 esumpfinval ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) → Σ* 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( 𝑀 ‘ ( ( 𝐹 “ { ( 1st𝑝 ) } ) ∩ ( 𝐺 “ { ( 2nd𝑝 ) } ) ) ) = Σ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( 𝑀 ‘ ( ( 𝐹 “ { ( 1st𝑝 ) } ) ∩ ( 𝐺 “ { ( 2nd𝑝 ) } ) ) ) )
254 172 196 253 3eqtrd ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) → ( 𝑀 ‘ ( ( 𝐹f + 𝐺 ) “ { 𝑧 } ) ) = Σ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( 𝑀 ‘ ( ( 𝐹 “ { ( 1st𝑝 ) } ) ∩ ( 𝐺 “ { ( 2nd𝑝 ) } ) ) ) )
255 rge0ssre ( 0 [,) +∞ ) ⊆ ℝ
256 255 252 sseldi ( ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( 𝑀 ‘ ( ( 𝐹 “ { ( 1st𝑝 ) } ) ∩ ( 𝐺 “ { ( 2nd𝑝 ) } ) ) ) ∈ ℝ )
257 199 256 fsumrecl ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) → Σ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( 𝑀 ‘ ( ( 𝐹 “ { ( 1st𝑝 ) } ) ∩ ( 𝐺 “ { ( 2nd𝑝 ) } ) ) ) ∈ ℝ )
258 254 257 eqeltrd ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) → ( 𝑀 ‘ ( ( 𝐹f + 𝐺 ) “ { 𝑧 } ) ) ∈ ℝ )
259 175 adantr ( ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 𝑀 ∈ ( measures ‘ dom 𝑀 ) )
260 176 109 sylanl2 ( ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( ( 𝐹 “ { ( 1st𝑝 ) } ) ∩ ( 𝐺 “ { ( 2nd𝑝 ) } ) ) ∈ dom 𝑀 )
261 measge0 ( ( 𝑀 ∈ ( measures ‘ dom 𝑀 ) ∧ ( ( 𝐹 “ { ( 1st𝑝 ) } ) ∩ ( 𝐺 “ { ( 2nd𝑝 ) } ) ) ∈ dom 𝑀 ) → 0 ≤ ( 𝑀 ‘ ( ( 𝐹 “ { ( 1st𝑝 ) } ) ∩ ( 𝐺 “ { ( 2nd𝑝 ) } ) ) ) )
262 259 260 261 syl2anc ( ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 0 ≤ ( 𝑀 ‘ ( ( 𝐹 “ { ( 1st𝑝 ) } ) ∩ ( 𝐺 “ { ( 2nd𝑝 ) } ) ) ) )
263 199 256 262 fsumge0 ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) → 0 ≤ Σ 𝑝 ∈ ( ( + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( 𝑀 ‘ ( ( 𝐹 “ { ( 1st𝑝 ) } ) ∩ ( 𝐺 “ { ( 2nd𝑝 ) } ) ) ) )
264 263 254 breqtrrd ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) → 0 ≤ ( 𝑀 ‘ ( ( 𝐹f + 𝐺 ) “ { 𝑧 } ) ) )
265 elrege0 ( ( 𝑀 ‘ ( ( 𝐹f + 𝐺 ) “ { 𝑧 } ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝑀 ‘ ( ( 𝐹f + 𝐺 ) “ { 𝑧 } ) ) ∈ ℝ ∧ 0 ≤ ( 𝑀 ‘ ( ( 𝐹f + 𝐺 ) “ { 𝑧 } ) ) ) )
266 258 264 265 sylanbrc ( ( 𝜑𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ) → ( 𝑀 ‘ ( ( 𝐹f + 𝐺 ) “ { 𝑧 } ) ) ∈ ( 0 [,) +∞ ) )
267 266 ralrimiva ( 𝜑 → ∀ 𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ( 𝑀 ‘ ( ( 𝐹f + 𝐺 ) “ { 𝑧 } ) ) ∈ ( 0 [,) +∞ ) )
268 eqid ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) = ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) )
269 eqid ( 0g𝐾 ) = ( 0g𝐾 )
270 eqid ( ·𝑠𝐾 ) = ( ·𝑠𝐾 )
271 eqid ( ℝHom ‘ ( Scalar ‘ 𝐾 ) ) = ( ℝHom ‘ ( Scalar ‘ 𝐾 ) )
272 10 30 268 269 270 271 14 8 issibf ( 𝜑 → ( ( 𝐹f + 𝐺 ) ∈ dom ( 𝐾 sitg 𝑀 ) ↔ ( ( 𝐹f + 𝐺 ) ∈ ( dom 𝑀 MblFnM ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) ∧ ran ( 𝐹f + 𝐺 ) ∈ Fin ∧ ∀ 𝑧 ∈ ( ran ( 𝐹f + 𝐺 ) ∖ { ( 0g𝐾 ) } ) ( 𝑀 ‘ ( ( 𝐹f + 𝐺 ) “ { 𝑧 } ) ) ∈ ( 0 [,) +∞ ) ) ) )
273 170 138 267 272 mpbir3and ( 𝜑 → ( 𝐹f + 𝐺 ) ∈ dom ( 𝐾 sitg 𝑀 ) )