Step |
Hyp |
Ref |
Expression |
1 |
|
sitgval.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
sitgval.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) |
3 |
|
sitgval.s |
⊢ 𝑆 = ( sigaGen ‘ 𝐽 ) |
4 |
|
sitgval.0 |
⊢ 0 = ( 0g ‘ 𝑊 ) |
5 |
|
sitgval.x |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
6 |
|
sitgval.h |
⊢ 𝐻 = ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) |
7 |
|
sitgval.1 |
⊢ ( 𝜑 → 𝑊 ∈ 𝑉 ) |
8 |
|
sitgval.2 |
⊢ ( 𝜑 → 𝑀 ∈ ∪ ran measures ) |
9 |
|
sibfmbl.1 |
⊢ ( 𝜑 → 𝐹 ∈ dom ( 𝑊 sitg 𝑀 ) ) |
10 |
|
sibfof.c |
⊢ 𝐶 = ( Base ‘ 𝐾 ) |
11 |
|
sibfof.0 |
⊢ ( 𝜑 → 𝑊 ∈ TopSp ) |
12 |
|
sibfof.1 |
⊢ ( 𝜑 → + : ( 𝐵 × 𝐵 ) ⟶ 𝐶 ) |
13 |
|
sibfof.2 |
⊢ ( 𝜑 → 𝐺 ∈ dom ( 𝑊 sitg 𝑀 ) ) |
14 |
|
sibfof.3 |
⊢ ( 𝜑 → 𝐾 ∈ TopSp ) |
15 |
|
sibfof.4 |
⊢ ( 𝜑 → 𝐽 ∈ Fre ) |
16 |
|
sibfof.5 |
⊢ ( 𝜑 → ( 0 + 0 ) = ( 0g ‘ 𝐾 ) ) |
17 |
1 2
|
tpsuni |
⊢ ( 𝑊 ∈ TopSp → 𝐵 = ∪ 𝐽 ) |
18 |
11 17
|
syl |
⊢ ( 𝜑 → 𝐵 = ∪ 𝐽 ) |
19 |
18
|
sqxpeqd |
⊢ ( 𝜑 → ( 𝐵 × 𝐵 ) = ( ∪ 𝐽 × ∪ 𝐽 ) ) |
20 |
19
|
feq2d |
⊢ ( 𝜑 → ( + : ( 𝐵 × 𝐵 ) ⟶ 𝐶 ↔ + : ( ∪ 𝐽 × ∪ 𝐽 ) ⟶ 𝐶 ) ) |
21 |
12 20
|
mpbid |
⊢ ( 𝜑 → + : ( ∪ 𝐽 × ∪ 𝐽 ) ⟶ 𝐶 ) |
22 |
21
|
fovrnda |
⊢ ( ( 𝜑 ∧ ( 𝑧 ∈ ∪ 𝐽 ∧ 𝑥 ∈ ∪ 𝐽 ) ) → ( 𝑧 + 𝑥 ) ∈ 𝐶 ) |
23 |
1 2 3 4 5 6 7 8 9
|
sibff |
⊢ ( 𝜑 → 𝐹 : ∪ dom 𝑀 ⟶ ∪ 𝐽 ) |
24 |
1 2 3 4 5 6 7 8 13
|
sibff |
⊢ ( 𝜑 → 𝐺 : ∪ dom 𝑀 ⟶ ∪ 𝐽 ) |
25 |
|
dmexg |
⊢ ( 𝑀 ∈ ∪ ran measures → dom 𝑀 ∈ V ) |
26 |
|
uniexg |
⊢ ( dom 𝑀 ∈ V → ∪ dom 𝑀 ∈ V ) |
27 |
8 25 26
|
3syl |
⊢ ( 𝜑 → ∪ dom 𝑀 ∈ V ) |
28 |
|
inidm |
⊢ ( ∪ dom 𝑀 ∩ ∪ dom 𝑀 ) = ∪ dom 𝑀 |
29 |
22 23 24 27 27 28
|
off |
⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) : ∪ dom 𝑀 ⟶ 𝐶 ) |
30 |
|
eqid |
⊢ ( TopOpen ‘ 𝐾 ) = ( TopOpen ‘ 𝐾 ) |
31 |
10 30
|
tpsuni |
⊢ ( 𝐾 ∈ TopSp → 𝐶 = ∪ ( TopOpen ‘ 𝐾 ) ) |
32 |
14 31
|
syl |
⊢ ( 𝜑 → 𝐶 = ∪ ( TopOpen ‘ 𝐾 ) ) |
33 |
|
fvex |
⊢ ( TopOpen ‘ 𝐾 ) ∈ V |
34 |
|
unisg |
⊢ ( ( TopOpen ‘ 𝐾 ) ∈ V → ∪ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) = ∪ ( TopOpen ‘ 𝐾 ) ) |
35 |
33 34
|
ax-mp |
⊢ ∪ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) = ∪ ( TopOpen ‘ 𝐾 ) |
36 |
32 35
|
eqtr4di |
⊢ ( 𝜑 → 𝐶 = ∪ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) |
37 |
36
|
feq3d |
⊢ ( 𝜑 → ( ( 𝐹 ∘f + 𝐺 ) : ∪ dom 𝑀 ⟶ 𝐶 ↔ ( 𝐹 ∘f + 𝐺 ) : ∪ dom 𝑀 ⟶ ∪ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) ) |
38 |
29 37
|
mpbid |
⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) : ∪ dom 𝑀 ⟶ ∪ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) |
39 |
33
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ 𝐾 ) ∈ V ) |
40 |
39
|
sgsiga |
⊢ ( 𝜑 → ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ∈ ∪ ran sigAlgebra ) |
41 |
40
|
uniexd |
⊢ ( 𝜑 → ∪ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ∈ V ) |
42 |
41 27
|
elmapd |
⊢ ( 𝜑 → ( ( 𝐹 ∘f + 𝐺 ) ∈ ( ∪ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ↑m ∪ dom 𝑀 ) ↔ ( 𝐹 ∘f + 𝐺 ) : ∪ dom 𝑀 ⟶ ∪ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) ) |
43 |
38 42
|
mpbird |
⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) ∈ ( ∪ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ↑m ∪ dom 𝑀 ) ) |
44 |
|
inundif |
⊢ ( ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ∪ ( 𝑏 ∖ ran ( 𝐹 ∘f + 𝐺 ) ) ) = 𝑏 |
45 |
44
|
imaeq2i |
⊢ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ∪ ( 𝑏 ∖ ran ( 𝐹 ∘f + 𝐺 ) ) ) ) = ( ◡ ( 𝐹 ∘f + 𝐺 ) “ 𝑏 ) |
46 |
|
ffun |
⊢ ( ( 𝐹 ∘f + 𝐺 ) : ∪ dom 𝑀 ⟶ 𝐶 → Fun ( 𝐹 ∘f + 𝐺 ) ) |
47 |
|
unpreima |
⊢ ( Fun ( 𝐹 ∘f + 𝐺 ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ∪ ( 𝑏 ∖ ran ( 𝐹 ∘f + 𝐺 ) ) ) ) = ( ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ) ∪ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹 ∘f + 𝐺 ) ) ) ) ) |
48 |
29 46 47
|
3syl |
⊢ ( 𝜑 → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ∪ ( 𝑏 ∖ ran ( 𝐹 ∘f + 𝐺 ) ) ) ) = ( ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ) ∪ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹 ∘f + 𝐺 ) ) ) ) ) |
49 |
48
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ∪ ( 𝑏 ∖ ran ( 𝐹 ∘f + 𝐺 ) ) ) ) = ( ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ) ∪ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹 ∘f + 𝐺 ) ) ) ) ) |
50 |
45 49
|
eqtr3id |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ 𝑏 ) = ( ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ) ∪ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹 ∘f + 𝐺 ) ) ) ) ) |
51 |
|
dmmeas |
⊢ ( 𝑀 ∈ ∪ ran measures → dom 𝑀 ∈ ∪ ran sigAlgebra ) |
52 |
8 51
|
syl |
⊢ ( 𝜑 → dom 𝑀 ∈ ∪ ran sigAlgebra ) |
53 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) → dom 𝑀 ∈ ∪ ran sigAlgebra ) |
54 |
|
imaiun |
⊢ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ∪ 𝑧 ∈ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) { 𝑧 } ) = ∪ 𝑧 ∈ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) |
55 |
|
iunid |
⊢ ∪ 𝑧 ∈ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) { 𝑧 } = ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) |
56 |
55
|
imaeq2i |
⊢ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ∪ 𝑧 ∈ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) { 𝑧 } ) = ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ) |
57 |
54 56
|
eqtr3i |
⊢ ∪ 𝑧 ∈ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) = ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ) |
58 |
|
inss2 |
⊢ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ⊆ ran ( 𝐹 ∘f + 𝐺 ) |
59 |
18
|
feq3d |
⊢ ( 𝜑 → ( 𝐹 : ∪ dom 𝑀 ⟶ 𝐵 ↔ 𝐹 : ∪ dom 𝑀 ⟶ ∪ 𝐽 ) ) |
60 |
23 59
|
mpbird |
⊢ ( 𝜑 → 𝐹 : ∪ dom 𝑀 ⟶ 𝐵 ) |
61 |
18
|
feq3d |
⊢ ( 𝜑 → ( 𝐺 : ∪ dom 𝑀 ⟶ 𝐵 ↔ 𝐺 : ∪ dom 𝑀 ⟶ ∪ 𝐽 ) ) |
62 |
24 61
|
mpbird |
⊢ ( 𝜑 → 𝐺 : ∪ dom 𝑀 ⟶ 𝐵 ) |
63 |
12
|
ffnd |
⊢ ( 𝜑 → + Fn ( 𝐵 × 𝐵 ) ) |
64 |
60 62 27 63
|
ofpreima2 |
⊢ ( 𝜑 → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) = ∪ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) |
65 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝐹 ∘f + 𝐺 ) ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) = ∪ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) |
66 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝐹 ∘f + 𝐺 ) ) → dom 𝑀 ∈ ∪ ran sigAlgebra ) |
67 |
52
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝐹 ∘f + 𝐺 ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → dom 𝑀 ∈ ∪ ran sigAlgebra ) |
68 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝐹 ∘f + 𝐺 ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 𝜑 ) |
69 |
|
inss1 |
⊢ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ⊆ ( ◡ + “ { 𝑧 } ) |
70 |
|
cnvimass |
⊢ ( ◡ + “ { 𝑧 } ) ⊆ dom + |
71 |
70 12
|
fssdm |
⊢ ( 𝜑 → ( ◡ + “ { 𝑧 } ) ⊆ ( 𝐵 × 𝐵 ) ) |
72 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝐹 ∘f + 𝐺 ) ) → ( ◡ + “ { 𝑧 } ) ⊆ ( 𝐵 × 𝐵 ) ) |
73 |
69 72
|
sstrid |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝐹 ∘f + 𝐺 ) ) → ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ⊆ ( 𝐵 × 𝐵 ) ) |
74 |
73
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝐹 ∘f + 𝐺 ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 𝑝 ∈ ( 𝐵 × 𝐵 ) ) |
75 |
52
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → dom 𝑀 ∈ ∪ ran sigAlgebra ) |
76 |
15
|
sgsiga |
⊢ ( 𝜑 → ( sigaGen ‘ 𝐽 ) ∈ ∪ ran sigAlgebra ) |
77 |
3 76
|
eqeltrid |
⊢ ( 𝜑 → 𝑆 ∈ ∪ ran sigAlgebra ) |
78 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → 𝑆 ∈ ∪ ran sigAlgebra ) |
79 |
1 2 3 4 5 6 7 8 9
|
sibfmbl |
⊢ ( 𝜑 → 𝐹 ∈ ( dom 𝑀 MblFnM 𝑆 ) ) |
80 |
79
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → 𝐹 ∈ ( dom 𝑀 MblFnM 𝑆 ) ) |
81 |
2
|
tpstop |
⊢ ( 𝑊 ∈ TopSp → 𝐽 ∈ Top ) |
82 |
|
cldssbrsiga |
⊢ ( 𝐽 ∈ Top → ( Clsd ‘ 𝐽 ) ⊆ ( sigaGen ‘ 𝐽 ) ) |
83 |
11 81 82
|
3syl |
⊢ ( 𝜑 → ( Clsd ‘ 𝐽 ) ⊆ ( sigaGen ‘ 𝐽 ) ) |
84 |
83
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → ( Clsd ‘ 𝐽 ) ⊆ ( sigaGen ‘ 𝐽 ) ) |
85 |
15
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → 𝐽 ∈ Fre ) |
86 |
|
xp1st |
⊢ ( 𝑝 ∈ ( 𝐵 × 𝐵 ) → ( 1st ‘ 𝑝 ) ∈ 𝐵 ) |
87 |
86
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → ( 1st ‘ 𝑝 ) ∈ 𝐵 ) |
88 |
18
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → 𝐵 = ∪ 𝐽 ) |
89 |
87 88
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → ( 1st ‘ 𝑝 ) ∈ ∪ 𝐽 ) |
90 |
|
eqid |
⊢ ∪ 𝐽 = ∪ 𝐽 |
91 |
90
|
t1sncld |
⊢ ( ( 𝐽 ∈ Fre ∧ ( 1st ‘ 𝑝 ) ∈ ∪ 𝐽 ) → { ( 1st ‘ 𝑝 ) } ∈ ( Clsd ‘ 𝐽 ) ) |
92 |
85 89 91
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → { ( 1st ‘ 𝑝 ) } ∈ ( Clsd ‘ 𝐽 ) ) |
93 |
84 92
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → { ( 1st ‘ 𝑝 ) } ∈ ( sigaGen ‘ 𝐽 ) ) |
94 |
93 3
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → { ( 1st ‘ 𝑝 ) } ∈ 𝑆 ) |
95 |
75 78 80 94
|
mbfmcnvima |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∈ dom 𝑀 ) |
96 |
68 74 95
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝐹 ∘f + 𝐺 ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∈ dom 𝑀 ) |
97 |
1 2 3 4 5 6 7 8 13
|
sibfmbl |
⊢ ( 𝜑 → 𝐺 ∈ ( dom 𝑀 MblFnM 𝑆 ) ) |
98 |
97
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → 𝐺 ∈ ( dom 𝑀 MblFnM 𝑆 ) ) |
99 |
|
xp2nd |
⊢ ( 𝑝 ∈ ( 𝐵 × 𝐵 ) → ( 2nd ‘ 𝑝 ) ∈ 𝐵 ) |
100 |
99
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → ( 2nd ‘ 𝑝 ) ∈ 𝐵 ) |
101 |
100 88
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → ( 2nd ‘ 𝑝 ) ∈ ∪ 𝐽 ) |
102 |
90
|
t1sncld |
⊢ ( ( 𝐽 ∈ Fre ∧ ( 2nd ‘ 𝑝 ) ∈ ∪ 𝐽 ) → { ( 2nd ‘ 𝑝 ) } ∈ ( Clsd ‘ 𝐽 ) ) |
103 |
85 101 102
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → { ( 2nd ‘ 𝑝 ) } ∈ ( Clsd ‘ 𝐽 ) ) |
104 |
84 103
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → { ( 2nd ‘ 𝑝 ) } ∈ ( sigaGen ‘ 𝐽 ) ) |
105 |
104 3
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → { ( 2nd ‘ 𝑝 ) } ∈ 𝑆 ) |
106 |
75 78 98 105
|
mbfmcnvima |
⊢ ( ( 𝜑 ∧ 𝑝 ∈ ( 𝐵 × 𝐵 ) ) → ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ∈ dom 𝑀 ) |
107 |
68 74 106
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝐹 ∘f + 𝐺 ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ∈ dom 𝑀 ) |
108 |
|
inelsiga |
⊢ ( ( dom 𝑀 ∈ ∪ ran sigAlgebra ∧ ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∈ dom 𝑀 ∧ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ∈ dom 𝑀 ) → ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ∈ dom 𝑀 ) |
109 |
67 96 107 108
|
syl3anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝐹 ∘f + 𝐺 ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ∈ dom 𝑀 ) |
110 |
109
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝐹 ∘f + 𝐺 ) ) → ∀ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ∈ dom 𝑀 ) |
111 |
1 2 3 4 5 6 7 8 9
|
sibfrn |
⊢ ( 𝜑 → ran 𝐹 ∈ Fin ) |
112 |
1 2 3 4 5 6 7 8 13
|
sibfrn |
⊢ ( 𝜑 → ran 𝐺 ∈ Fin ) |
113 |
|
xpfi |
⊢ ( ( ran 𝐹 ∈ Fin ∧ ran 𝐺 ∈ Fin ) → ( ran 𝐹 × ran 𝐺 ) ∈ Fin ) |
114 |
111 112 113
|
syl2anc |
⊢ ( 𝜑 → ( ran 𝐹 × ran 𝐺 ) ∈ Fin ) |
115 |
|
inss2 |
⊢ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ⊆ ( ran 𝐹 × ran 𝐺 ) |
116 |
|
ssdomg |
⊢ ( ( ran 𝐹 × ran 𝐺 ) ∈ Fin → ( ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ⊆ ( ran 𝐹 × ran 𝐺 ) → ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ≼ ( ran 𝐹 × ran 𝐺 ) ) ) |
117 |
114 115 116
|
mpisyl |
⊢ ( 𝜑 → ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ≼ ( ran 𝐹 × ran 𝐺 ) ) |
118 |
|
isfinite |
⊢ ( ( ran 𝐹 × ran 𝐺 ) ∈ Fin ↔ ( ran 𝐹 × ran 𝐺 ) ≺ ω ) |
119 |
118
|
biimpi |
⊢ ( ( ran 𝐹 × ran 𝐺 ) ∈ Fin → ( ran 𝐹 × ran 𝐺 ) ≺ ω ) |
120 |
|
sdomdom |
⊢ ( ( ran 𝐹 × ran 𝐺 ) ≺ ω → ( ran 𝐹 × ran 𝐺 ) ≼ ω ) |
121 |
114 119 120
|
3syl |
⊢ ( 𝜑 → ( ran 𝐹 × ran 𝐺 ) ≼ ω ) |
122 |
|
domtr |
⊢ ( ( ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ≼ ( ran 𝐹 × ran 𝐺 ) ∧ ( ran 𝐹 × ran 𝐺 ) ≼ ω ) → ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ≼ ω ) |
123 |
117 121 122
|
syl2anc |
⊢ ( 𝜑 → ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ≼ ω ) |
124 |
123
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝐹 ∘f + 𝐺 ) ) → ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ≼ ω ) |
125 |
|
nfcv |
⊢ Ⅎ 𝑝 ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) |
126 |
125
|
sigaclcuni |
⊢ ( ( dom 𝑀 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ∈ dom 𝑀 ∧ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ≼ ω ) → ∪ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ∈ dom 𝑀 ) |
127 |
66 110 124 126
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝐹 ∘f + 𝐺 ) ) → ∪ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ∈ dom 𝑀 ) |
128 |
65 127
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ran ( 𝐹 ∘f + 𝐺 ) ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ∈ dom 𝑀 ) |
129 |
128
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ran ( 𝐹 ∘f + 𝐺 ) ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ∈ dom 𝑀 ) |
130 |
|
ssralv |
⊢ ( ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ⊆ ran ( 𝐹 ∘f + 𝐺 ) → ( ∀ 𝑧 ∈ ran ( 𝐹 ∘f + 𝐺 ) ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ∈ dom 𝑀 → ∀ 𝑧 ∈ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ∈ dom 𝑀 ) ) |
131 |
58 129 130
|
mpsyl |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ∈ dom 𝑀 ) |
132 |
131
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) → ∀ 𝑧 ∈ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ∈ dom 𝑀 ) |
133 |
12
|
ffund |
⊢ ( 𝜑 → Fun + ) |
134 |
|
imafi |
⊢ ( ( Fun + ∧ ( ran 𝐹 × ran 𝐺 ) ∈ Fin ) → ( + “ ( ran 𝐹 × ran 𝐺 ) ) ∈ Fin ) |
135 |
133 114 134
|
syl2anc |
⊢ ( 𝜑 → ( + “ ( ran 𝐹 × ran 𝐺 ) ) ∈ Fin ) |
136 |
23 24 21 27
|
ofrn2 |
⊢ ( 𝜑 → ran ( 𝐹 ∘f + 𝐺 ) ⊆ ( + “ ( ran 𝐹 × ran 𝐺 ) ) ) |
137 |
|
ssfi |
⊢ ( ( ( + “ ( ran 𝐹 × ran 𝐺 ) ) ∈ Fin ∧ ran ( 𝐹 ∘f + 𝐺 ) ⊆ ( + “ ( ran 𝐹 × ran 𝐺 ) ) ) → ran ( 𝐹 ∘f + 𝐺 ) ∈ Fin ) |
138 |
135 136 137
|
syl2anc |
⊢ ( 𝜑 → ran ( 𝐹 ∘f + 𝐺 ) ∈ Fin ) |
139 |
|
ssdomg |
⊢ ( ran ( 𝐹 ∘f + 𝐺 ) ∈ Fin → ( ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ⊆ ran ( 𝐹 ∘f + 𝐺 ) → ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ≼ ran ( 𝐹 ∘f + 𝐺 ) ) ) |
140 |
138 58 139
|
mpisyl |
⊢ ( 𝜑 → ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ≼ ran ( 𝐹 ∘f + 𝐺 ) ) |
141 |
|
isfinite |
⊢ ( ran ( 𝐹 ∘f + 𝐺 ) ∈ Fin ↔ ran ( 𝐹 ∘f + 𝐺 ) ≺ ω ) |
142 |
138 141
|
sylib |
⊢ ( 𝜑 → ran ( 𝐹 ∘f + 𝐺 ) ≺ ω ) |
143 |
|
sdomdom |
⊢ ( ran ( 𝐹 ∘f + 𝐺 ) ≺ ω → ran ( 𝐹 ∘f + 𝐺 ) ≼ ω ) |
144 |
142 143
|
syl |
⊢ ( 𝜑 → ran ( 𝐹 ∘f + 𝐺 ) ≼ ω ) |
145 |
|
domtr |
⊢ ( ( ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ≼ ran ( 𝐹 ∘f + 𝐺 ) ∧ ran ( 𝐹 ∘f + 𝐺 ) ≼ ω ) → ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ≼ ω ) |
146 |
140 144 145
|
syl2anc |
⊢ ( 𝜑 → ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ≼ ω ) |
147 |
146
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) → ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ≼ ω ) |
148 |
|
nfcv |
⊢ Ⅎ 𝑧 ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) |
149 |
148
|
sigaclcuni |
⊢ ( ( dom 𝑀 ∈ ∪ ran sigAlgebra ∧ ∀ 𝑧 ∈ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ∈ dom 𝑀 ∧ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ≼ ω ) → ∪ 𝑧 ∈ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ∈ dom 𝑀 ) |
150 |
53 132 147 149
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) → ∪ 𝑧 ∈ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ∈ dom 𝑀 ) |
151 |
57 150
|
eqeltrrid |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ) ∈ dom 𝑀 ) |
152 |
|
difpreima |
⊢ ( Fun ( 𝐹 ∘f + 𝐺 ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹 ∘f + 𝐺 ) ) ) = ( ( ◡ ( 𝐹 ∘f + 𝐺 ) “ 𝑏 ) ∖ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ran ( 𝐹 ∘f + 𝐺 ) ) ) ) |
153 |
29 46 152
|
3syl |
⊢ ( 𝜑 → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹 ∘f + 𝐺 ) ) ) = ( ( ◡ ( 𝐹 ∘f + 𝐺 ) “ 𝑏 ) ∖ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ran ( 𝐹 ∘f + 𝐺 ) ) ) ) |
154 |
|
cnvimarndm |
⊢ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ran ( 𝐹 ∘f + 𝐺 ) ) = dom ( 𝐹 ∘f + 𝐺 ) |
155 |
154
|
difeq2i |
⊢ ( ( ◡ ( 𝐹 ∘f + 𝐺 ) “ 𝑏 ) ∖ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ran ( 𝐹 ∘f + 𝐺 ) ) ) = ( ( ◡ ( 𝐹 ∘f + 𝐺 ) “ 𝑏 ) ∖ dom ( 𝐹 ∘f + 𝐺 ) ) |
156 |
|
cnvimass |
⊢ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ 𝑏 ) ⊆ dom ( 𝐹 ∘f + 𝐺 ) |
157 |
|
ssdif0 |
⊢ ( ( ◡ ( 𝐹 ∘f + 𝐺 ) “ 𝑏 ) ⊆ dom ( 𝐹 ∘f + 𝐺 ) ↔ ( ( ◡ ( 𝐹 ∘f + 𝐺 ) “ 𝑏 ) ∖ dom ( 𝐹 ∘f + 𝐺 ) ) = ∅ ) |
158 |
156 157
|
mpbi |
⊢ ( ( ◡ ( 𝐹 ∘f + 𝐺 ) “ 𝑏 ) ∖ dom ( 𝐹 ∘f + 𝐺 ) ) = ∅ |
159 |
155 158
|
eqtri |
⊢ ( ( ◡ ( 𝐹 ∘f + 𝐺 ) “ 𝑏 ) ∖ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ran ( 𝐹 ∘f + 𝐺 ) ) ) = ∅ |
160 |
153 159
|
eqtrdi |
⊢ ( 𝜑 → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹 ∘f + 𝐺 ) ) ) = ∅ ) |
161 |
|
0elsiga |
⊢ ( dom 𝑀 ∈ ∪ ran sigAlgebra → ∅ ∈ dom 𝑀 ) |
162 |
8 51 161
|
3syl |
⊢ ( 𝜑 → ∅ ∈ dom 𝑀 ) |
163 |
160 162
|
eqeltrd |
⊢ ( 𝜑 → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹 ∘f + 𝐺 ) ) ) ∈ dom 𝑀 ) |
164 |
163
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹 ∘f + 𝐺 ) ) ) ∈ dom 𝑀 ) |
165 |
|
unelsiga |
⊢ ( ( dom 𝑀 ∈ ∪ ran sigAlgebra ∧ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ) ∈ dom 𝑀 ∧ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹 ∘f + 𝐺 ) ) ) ∈ dom 𝑀 ) → ( ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ) ∪ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹 ∘f + 𝐺 ) ) ) ) ∈ dom 𝑀 ) |
166 |
53 151 164 165
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) → ( ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∩ ran ( 𝐹 ∘f + 𝐺 ) ) ) ∪ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ ( 𝑏 ∖ ran ( 𝐹 ∘f + 𝐺 ) ) ) ) ∈ dom 𝑀 ) |
167 |
50 166
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ 𝑏 ) ∈ dom 𝑀 ) |
168 |
167
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ( ◡ ( 𝐹 ∘f + 𝐺 ) “ 𝑏 ) ∈ dom 𝑀 ) |
169 |
52 40
|
ismbfm |
⊢ ( 𝜑 → ( ( 𝐹 ∘f + 𝐺 ) ∈ ( dom 𝑀 MblFnM ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) ↔ ( ( 𝐹 ∘f + 𝐺 ) ∈ ( ∪ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ↑m ∪ dom 𝑀 ) ∧ ∀ 𝑏 ∈ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ( ◡ ( 𝐹 ∘f + 𝐺 ) “ 𝑏 ) ∈ dom 𝑀 ) ) ) |
170 |
43 168 169
|
mpbir2and |
⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) ∈ ( dom 𝑀 MblFnM ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) ) |
171 |
64
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) → ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) = ∪ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) |
172 |
171
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) → ( 𝑀 ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ) = ( 𝑀 ‘ ∪ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ) |
173 |
|
measbasedom |
⊢ ( 𝑀 ∈ ∪ ran measures ↔ 𝑀 ∈ ( measures ‘ dom 𝑀 ) ) |
174 |
8 173
|
sylib |
⊢ ( 𝜑 → 𝑀 ∈ ( measures ‘ dom 𝑀 ) ) |
175 |
174
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) → 𝑀 ∈ ( measures ‘ dom 𝑀 ) ) |
176 |
|
eldifi |
⊢ ( 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) → 𝑧 ∈ ran ( 𝐹 ∘f + 𝐺 ) ) |
177 |
176 110
|
sylan2 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) → ∀ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ∈ dom 𝑀 ) |
178 |
123
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) → ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ≼ ω ) |
179 |
|
sneq |
⊢ ( 𝑥 = ( 1st ‘ 𝑝 ) → { 𝑥 } = { ( 1st ‘ 𝑝 ) } ) |
180 |
179
|
imaeq2d |
⊢ ( 𝑥 = ( 1st ‘ 𝑝 ) → ( ◡ 𝐹 “ { 𝑥 } ) = ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ) |
181 |
|
sneq |
⊢ ( 𝑦 = ( 2nd ‘ 𝑝 ) → { 𝑦 } = { ( 2nd ‘ 𝑝 ) } ) |
182 |
181
|
imaeq2d |
⊢ ( 𝑦 = ( 2nd ‘ 𝑝 ) → ( ◡ 𝐺 “ { 𝑦 } ) = ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) |
183 |
23
|
ffund |
⊢ ( 𝜑 → Fun 𝐹 ) |
184 |
|
sndisj |
⊢ Disj 𝑥 ∈ ran 𝐹 { 𝑥 } |
185 |
|
disjpreima |
⊢ ( ( Fun 𝐹 ∧ Disj 𝑥 ∈ ran 𝐹 { 𝑥 } ) → Disj 𝑥 ∈ ran 𝐹 ( ◡ 𝐹 “ { 𝑥 } ) ) |
186 |
183 184 185
|
sylancl |
⊢ ( 𝜑 → Disj 𝑥 ∈ ran 𝐹 ( ◡ 𝐹 “ { 𝑥 } ) ) |
187 |
24
|
ffund |
⊢ ( 𝜑 → Fun 𝐺 ) |
188 |
|
sndisj |
⊢ Disj 𝑦 ∈ ran 𝐺 { 𝑦 } |
189 |
|
disjpreima |
⊢ ( ( Fun 𝐺 ∧ Disj 𝑦 ∈ ran 𝐺 { 𝑦 } ) → Disj 𝑦 ∈ ran 𝐺 ( ◡ 𝐺 “ { 𝑦 } ) ) |
190 |
187 188 189
|
sylancl |
⊢ ( 𝜑 → Disj 𝑦 ∈ ran 𝐺 ( ◡ 𝐺 “ { 𝑦 } ) ) |
191 |
180 182 186 190
|
disjxpin |
⊢ ( 𝜑 → Disj 𝑝 ∈ ( ran 𝐹 × ran 𝐺 ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) |
192 |
|
disjss1 |
⊢ ( ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ⊆ ( ran 𝐹 × ran 𝐺 ) → ( Disj 𝑝 ∈ ( ran 𝐹 × ran 𝐺 ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) → Disj 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ) |
193 |
115 191 192
|
mpsyl |
⊢ ( 𝜑 → Disj 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) |
194 |
193
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) → Disj 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) |
195 |
|
measvuni |
⊢ ( ( 𝑀 ∈ ( measures ‘ dom 𝑀 ) ∧ ∀ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ∈ dom 𝑀 ∧ ( ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ≼ ω ∧ Disj 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ) → ( 𝑀 ‘ ∪ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) = Σ* 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( 𝑀 ‘ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ) |
196 |
175 177 178 194 195
|
syl112anc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) → ( 𝑀 ‘ ∪ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) = Σ* 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( 𝑀 ‘ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ) |
197 |
|
ssfi |
⊢ ( ( ( ran 𝐹 × ran 𝐺 ) ∈ Fin ∧ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ⊆ ( ran 𝐹 × ran 𝐺 ) ) → ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ∈ Fin ) |
198 |
114 115 197
|
sylancl |
⊢ ( 𝜑 → ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ∈ Fin ) |
199 |
198
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) → ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ∈ Fin ) |
200 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 𝜑 ) |
201 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) |
202 |
115 201
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 𝑝 ∈ ( ran 𝐹 × ran 𝐺 ) ) |
203 |
|
xp1st |
⊢ ( 𝑝 ∈ ( ran 𝐹 × ran 𝐺 ) → ( 1st ‘ 𝑝 ) ∈ ran 𝐹 ) |
204 |
202 203
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( 1st ‘ 𝑝 ) ∈ ran 𝐹 ) |
205 |
|
xp2nd |
⊢ ( 𝑝 ∈ ( ran 𝐹 × ran 𝐺 ) → ( 2nd ‘ 𝑝 ) ∈ ran 𝐺 ) |
206 |
202 205
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( 2nd ‘ 𝑝 ) ∈ ran 𝐺 ) |
207 |
|
oveq12 |
⊢ ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) → ( 𝑥 + 𝑦 ) = ( 0 + 0 ) ) |
208 |
207 16
|
sylan9eqr |
⊢ ( ( 𝜑 ∧ ( 𝑥 = 0 ∧ 𝑦 = 0 ) ) → ( 𝑥 + 𝑦 ) = ( 0g ‘ 𝐾 ) ) |
209 |
208
|
ex |
⊢ ( 𝜑 → ( ( 𝑥 = 0 ∧ 𝑦 = 0 ) → ( 𝑥 + 𝑦 ) = ( 0g ‘ 𝐾 ) ) ) |
210 |
209
|
necon3ad |
⊢ ( 𝜑 → ( ( 𝑥 + 𝑦 ) ≠ ( 0g ‘ 𝐾 ) → ¬ ( 𝑥 = 0 ∧ 𝑦 = 0 ) ) ) |
211 |
|
neorian |
⊢ ( ( 𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ) ↔ ¬ ( 𝑥 = 0 ∧ 𝑦 = 0 ) ) |
212 |
210 211
|
syl6ibr |
⊢ ( 𝜑 → ( ( 𝑥 + 𝑦 ) ≠ ( 0g ‘ 𝐾 ) → ( 𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ) ) ) |
213 |
212
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐵 ∧ 𝑦 ∈ 𝐵 ) ) → ( ( 𝑥 + 𝑦 ) ≠ ( 0g ‘ 𝐾 ) → ( 𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ) ) ) |
214 |
213
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ≠ ( 0g ‘ 𝐾 ) → ( 𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ) ) ) |
215 |
200 214
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ≠ ( 0g ‘ 𝐾 ) → ( 𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ) ) ) |
216 |
69
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) → ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ⊆ ( ◡ + “ { 𝑧 } ) ) |
217 |
216
|
sselda |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 𝑝 ∈ ( ◡ + “ { 𝑧 } ) ) |
218 |
|
fniniseg |
⊢ ( + Fn ( 𝐵 × 𝐵 ) → ( 𝑝 ∈ ( ◡ + “ { 𝑧 } ) ↔ ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ∧ ( + ‘ 𝑝 ) = 𝑧 ) ) ) |
219 |
200 63 218
|
3syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( 𝑝 ∈ ( ◡ + “ { 𝑧 } ) ↔ ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ∧ ( + ‘ 𝑝 ) = 𝑧 ) ) ) |
220 |
217 219
|
mpbid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ∧ ( + ‘ 𝑝 ) = 𝑧 ) ) |
221 |
|
simpr |
⊢ ( ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ∧ ( + ‘ 𝑝 ) = 𝑧 ) → ( + ‘ 𝑝 ) = 𝑧 ) |
222 |
|
1st2nd2 |
⊢ ( 𝑝 ∈ ( 𝐵 × 𝐵 ) → 𝑝 = 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 ) |
223 |
222
|
fveq2d |
⊢ ( 𝑝 ∈ ( 𝐵 × 𝐵 ) → ( + ‘ 𝑝 ) = ( + ‘ 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 ) ) |
224 |
|
df-ov |
⊢ ( ( 1st ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) = ( + ‘ 〈 ( 1st ‘ 𝑝 ) , ( 2nd ‘ 𝑝 ) 〉 ) |
225 |
223 224
|
eqtr4di |
⊢ ( 𝑝 ∈ ( 𝐵 × 𝐵 ) → ( + ‘ 𝑝 ) = ( ( 1st ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) ) |
226 |
225
|
adantr |
⊢ ( ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ∧ ( + ‘ 𝑝 ) = 𝑧 ) → ( + ‘ 𝑝 ) = ( ( 1st ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) ) |
227 |
221 226
|
eqtr3d |
⊢ ( ( 𝑝 ∈ ( 𝐵 × 𝐵 ) ∧ ( + ‘ 𝑝 ) = 𝑧 ) → 𝑧 = ( ( 1st ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) ) |
228 |
220 227
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 𝑧 = ( ( 1st ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) ) |
229 |
|
simplr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) |
230 |
229
|
eldifbd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ¬ 𝑧 ∈ { ( 0g ‘ 𝐾 ) } ) |
231 |
|
velsn |
⊢ ( 𝑧 ∈ { ( 0g ‘ 𝐾 ) } ↔ 𝑧 = ( 0g ‘ 𝐾 ) ) |
232 |
231
|
necon3bbii |
⊢ ( ¬ 𝑧 ∈ { ( 0g ‘ 𝐾 ) } ↔ 𝑧 ≠ ( 0g ‘ 𝐾 ) ) |
233 |
230 232
|
sylib |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 𝑧 ≠ ( 0g ‘ 𝐾 ) ) |
234 |
228 233
|
eqnetrrd |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( ( 1st ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) ≠ ( 0g ‘ 𝐾 ) ) |
235 |
176 74
|
sylanl2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 𝑝 ∈ ( 𝐵 × 𝐵 ) ) |
236 |
235 86
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( 1st ‘ 𝑝 ) ∈ 𝐵 ) |
237 |
235 99
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( 2nd ‘ 𝑝 ) ∈ 𝐵 ) |
238 |
|
oveq1 |
⊢ ( 𝑥 = ( 1st ‘ 𝑝 ) → ( 𝑥 + 𝑦 ) = ( ( 1st ‘ 𝑝 ) + 𝑦 ) ) |
239 |
238
|
neeq1d |
⊢ ( 𝑥 = ( 1st ‘ 𝑝 ) → ( ( 𝑥 + 𝑦 ) ≠ ( 0g ‘ 𝐾 ) ↔ ( ( 1st ‘ 𝑝 ) + 𝑦 ) ≠ ( 0g ‘ 𝐾 ) ) ) |
240 |
|
neeq1 |
⊢ ( 𝑥 = ( 1st ‘ 𝑝 ) → ( 𝑥 ≠ 0 ↔ ( 1st ‘ 𝑝 ) ≠ 0 ) ) |
241 |
240
|
orbi1d |
⊢ ( 𝑥 = ( 1st ‘ 𝑝 ) → ( ( 𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ) ↔ ( ( 1st ‘ 𝑝 ) ≠ 0 ∨ 𝑦 ≠ 0 ) ) ) |
242 |
239 241
|
imbi12d |
⊢ ( 𝑥 = ( 1st ‘ 𝑝 ) → ( ( ( 𝑥 + 𝑦 ) ≠ ( 0g ‘ 𝐾 ) → ( 𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ) ) ↔ ( ( ( 1st ‘ 𝑝 ) + 𝑦 ) ≠ ( 0g ‘ 𝐾 ) → ( ( 1st ‘ 𝑝 ) ≠ 0 ∨ 𝑦 ≠ 0 ) ) ) ) |
243 |
|
oveq2 |
⊢ ( 𝑦 = ( 2nd ‘ 𝑝 ) → ( ( 1st ‘ 𝑝 ) + 𝑦 ) = ( ( 1st ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) ) |
244 |
243
|
neeq1d |
⊢ ( 𝑦 = ( 2nd ‘ 𝑝 ) → ( ( ( 1st ‘ 𝑝 ) + 𝑦 ) ≠ ( 0g ‘ 𝐾 ) ↔ ( ( 1st ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) ≠ ( 0g ‘ 𝐾 ) ) ) |
245 |
|
neeq1 |
⊢ ( 𝑦 = ( 2nd ‘ 𝑝 ) → ( 𝑦 ≠ 0 ↔ ( 2nd ‘ 𝑝 ) ≠ 0 ) ) |
246 |
245
|
orbi2d |
⊢ ( 𝑦 = ( 2nd ‘ 𝑝 ) → ( ( ( 1st ‘ 𝑝 ) ≠ 0 ∨ 𝑦 ≠ 0 ) ↔ ( ( 1st ‘ 𝑝 ) ≠ 0 ∨ ( 2nd ‘ 𝑝 ) ≠ 0 ) ) ) |
247 |
244 246
|
imbi12d |
⊢ ( 𝑦 = ( 2nd ‘ 𝑝 ) → ( ( ( ( 1st ‘ 𝑝 ) + 𝑦 ) ≠ ( 0g ‘ 𝐾 ) → ( ( 1st ‘ 𝑝 ) ≠ 0 ∨ 𝑦 ≠ 0 ) ) ↔ ( ( ( 1st ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) ≠ ( 0g ‘ 𝐾 ) → ( ( 1st ‘ 𝑝 ) ≠ 0 ∨ ( 2nd ‘ 𝑝 ) ≠ 0 ) ) ) ) |
248 |
242 247
|
rspc2v |
⊢ ( ( ( 1st ‘ 𝑝 ) ∈ 𝐵 ∧ ( 2nd ‘ 𝑝 ) ∈ 𝐵 ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ≠ ( 0g ‘ 𝐾 ) → ( 𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ) ) → ( ( ( 1st ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) ≠ ( 0g ‘ 𝐾 ) → ( ( 1st ‘ 𝑝 ) ≠ 0 ∨ ( 2nd ‘ 𝑝 ) ≠ 0 ) ) ) ) |
249 |
236 237 248
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ( ( 𝑥 + 𝑦 ) ≠ ( 0g ‘ 𝐾 ) → ( 𝑥 ≠ 0 ∨ 𝑦 ≠ 0 ) ) → ( ( ( 1st ‘ 𝑝 ) + ( 2nd ‘ 𝑝 ) ) ≠ ( 0g ‘ 𝐾 ) → ( ( 1st ‘ 𝑝 ) ≠ 0 ∨ ( 2nd ‘ 𝑝 ) ≠ 0 ) ) ) ) |
250 |
215 234 249
|
mp2d |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( ( 1st ‘ 𝑝 ) ≠ 0 ∨ ( 2nd ‘ 𝑝 ) ≠ 0 ) ) |
251 |
1 2 3 4 5 6 7 8 9 13 11 15
|
sibfinima |
⊢ ( ( ( 𝜑 ∧ ( 1st ‘ 𝑝 ) ∈ ran 𝐹 ∧ ( 2nd ‘ 𝑝 ) ∈ ran 𝐺 ) ∧ ( ( 1st ‘ 𝑝 ) ≠ 0 ∨ ( 2nd ‘ 𝑝 ) ≠ 0 ) ) → ( 𝑀 ‘ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ∈ ( 0 [,) +∞ ) ) |
252 |
200 204 206 250 251
|
syl31anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( 𝑀 ‘ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ∈ ( 0 [,) +∞ ) ) |
253 |
199 252
|
esumpfinval |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) → Σ* 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( 𝑀 ‘ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) = Σ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( 𝑀 ‘ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ) |
254 |
172 196 253
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) → ( 𝑀 ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ) = Σ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( 𝑀 ‘ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ) |
255 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
256 |
255 252
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( 𝑀 ‘ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ∈ ℝ ) |
257 |
199 256
|
fsumrecl |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) → Σ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( 𝑀 ‘ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ∈ ℝ ) |
258 |
254 257
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) → ( 𝑀 ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ) ∈ ℝ ) |
259 |
175
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 𝑀 ∈ ( measures ‘ dom 𝑀 ) ) |
260 |
176 109
|
sylanl2 |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ∈ dom 𝑀 ) |
261 |
|
measge0 |
⊢ ( ( 𝑀 ∈ ( measures ‘ dom 𝑀 ) ∧ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ∈ dom 𝑀 ) → 0 ≤ ( 𝑀 ‘ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ) |
262 |
259 260 261
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) ∧ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ) → 0 ≤ ( 𝑀 ‘ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ) |
263 |
199 256 262
|
fsumge0 |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) → 0 ≤ Σ 𝑝 ∈ ( ( ◡ + “ { 𝑧 } ) ∩ ( ran 𝐹 × ran 𝐺 ) ) ( 𝑀 ‘ ( ( ◡ 𝐹 “ { ( 1st ‘ 𝑝 ) } ) ∩ ( ◡ 𝐺 “ { ( 2nd ‘ 𝑝 ) } ) ) ) ) |
264 |
263 254
|
breqtrrd |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) → 0 ≤ ( 𝑀 ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ) ) |
265 |
|
elrege0 |
⊢ ( ( 𝑀 ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ) ∈ ( 0 [,) +∞ ) ↔ ( ( 𝑀 ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ) ∈ ℝ ∧ 0 ≤ ( 𝑀 ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ) ) ) |
266 |
258 264 265
|
sylanbrc |
⊢ ( ( 𝜑 ∧ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ) → ( 𝑀 ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ) ∈ ( 0 [,) +∞ ) ) |
267 |
266
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ( 𝑀 ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ) ∈ ( 0 [,) +∞ ) ) |
268 |
|
eqid |
⊢ ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) = ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) |
269 |
|
eqid |
⊢ ( 0g ‘ 𝐾 ) = ( 0g ‘ 𝐾 ) |
270 |
|
eqid |
⊢ ( ·𝑠 ‘ 𝐾 ) = ( ·𝑠 ‘ 𝐾 ) |
271 |
|
eqid |
⊢ ( ℝHom ‘ ( Scalar ‘ 𝐾 ) ) = ( ℝHom ‘ ( Scalar ‘ 𝐾 ) ) |
272 |
10 30 268 269 270 271 14 8
|
issibf |
⊢ ( 𝜑 → ( ( 𝐹 ∘f + 𝐺 ) ∈ dom ( 𝐾 sitg 𝑀 ) ↔ ( ( 𝐹 ∘f + 𝐺 ) ∈ ( dom 𝑀 MblFnM ( sigaGen ‘ ( TopOpen ‘ 𝐾 ) ) ) ∧ ran ( 𝐹 ∘f + 𝐺 ) ∈ Fin ∧ ∀ 𝑧 ∈ ( ran ( 𝐹 ∘f + 𝐺 ) ∖ { ( 0g ‘ 𝐾 ) } ) ( 𝑀 ‘ ( ◡ ( 𝐹 ∘f + 𝐺 ) “ { 𝑧 } ) ) ∈ ( 0 [,) +∞ ) ) ) ) |
273 |
170 138 267 272
|
mpbir3and |
⊢ ( 𝜑 → ( 𝐹 ∘f + 𝐺 ) ∈ dom ( 𝐾 sitg 𝑀 ) ) |