| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sitgval.b |  |-  B = ( Base ` W ) | 
						
							| 2 |  | sitgval.j |  |-  J = ( TopOpen ` W ) | 
						
							| 3 |  | sitgval.s |  |-  S = ( sigaGen ` J ) | 
						
							| 4 |  | sitgval.0 |  |-  .0. = ( 0g ` W ) | 
						
							| 5 |  | sitgval.x |  |-  .x. = ( .s ` W ) | 
						
							| 6 |  | sitgval.h |  |-  H = ( RRHom ` ( Scalar ` W ) ) | 
						
							| 7 |  | sitgval.1 |  |-  ( ph -> W e. V ) | 
						
							| 8 |  | sitgval.2 |  |-  ( ph -> M e. U. ran measures ) | 
						
							| 9 |  | sibfmbl.1 |  |-  ( ph -> F e. dom ( W sitg M ) ) | 
						
							| 10 |  | sibfof.c |  |-  C = ( Base ` K ) | 
						
							| 11 |  | sibfof.0 |  |-  ( ph -> W e. TopSp ) | 
						
							| 12 |  | sibfof.1 |  |-  ( ph -> .+ : ( B X. B ) --> C ) | 
						
							| 13 |  | sibfof.2 |  |-  ( ph -> G e. dom ( W sitg M ) ) | 
						
							| 14 |  | sibfof.3 |  |-  ( ph -> K e. TopSp ) | 
						
							| 15 |  | sibfof.4 |  |-  ( ph -> J e. Fre ) | 
						
							| 16 |  | sibfof.5 |  |-  ( ph -> ( .0. .+ .0. ) = ( 0g ` K ) ) | 
						
							| 17 | 1 2 | tpsuni |  |-  ( W e. TopSp -> B = U. J ) | 
						
							| 18 | 11 17 | syl |  |-  ( ph -> B = U. J ) | 
						
							| 19 | 18 | sqxpeqd |  |-  ( ph -> ( B X. B ) = ( U. J X. U. J ) ) | 
						
							| 20 | 19 | feq2d |  |-  ( ph -> ( .+ : ( B X. B ) --> C <-> .+ : ( U. J X. U. J ) --> C ) ) | 
						
							| 21 | 12 20 | mpbid |  |-  ( ph -> .+ : ( U. J X. U. J ) --> C ) | 
						
							| 22 | 21 | fovcdmda |  |-  ( ( ph /\ ( z e. U. J /\ x e. U. J ) ) -> ( z .+ x ) e. C ) | 
						
							| 23 | 1 2 3 4 5 6 7 8 9 | sibff |  |-  ( ph -> F : U. dom M --> U. J ) | 
						
							| 24 | 1 2 3 4 5 6 7 8 13 | sibff |  |-  ( ph -> G : U. dom M --> U. J ) | 
						
							| 25 |  | dmexg |  |-  ( M e. U. ran measures -> dom M e. _V ) | 
						
							| 26 |  | uniexg |  |-  ( dom M e. _V -> U. dom M e. _V ) | 
						
							| 27 | 8 25 26 | 3syl |  |-  ( ph -> U. dom M e. _V ) | 
						
							| 28 |  | inidm |  |-  ( U. dom M i^i U. dom M ) = U. dom M | 
						
							| 29 | 22 23 24 27 27 28 | off |  |-  ( ph -> ( F oF .+ G ) : U. dom M --> C ) | 
						
							| 30 |  | eqid |  |-  ( TopOpen ` K ) = ( TopOpen ` K ) | 
						
							| 31 | 10 30 | tpsuni |  |-  ( K e. TopSp -> C = U. ( TopOpen ` K ) ) | 
						
							| 32 | 14 31 | syl |  |-  ( ph -> C = U. ( TopOpen ` K ) ) | 
						
							| 33 |  | fvex |  |-  ( TopOpen ` K ) e. _V | 
						
							| 34 |  | unisg |  |-  ( ( TopOpen ` K ) e. _V -> U. ( sigaGen ` ( TopOpen ` K ) ) = U. ( TopOpen ` K ) ) | 
						
							| 35 | 33 34 | ax-mp |  |-  U. ( sigaGen ` ( TopOpen ` K ) ) = U. ( TopOpen ` K ) | 
						
							| 36 | 32 35 | eqtr4di |  |-  ( ph -> C = U. ( sigaGen ` ( TopOpen ` K ) ) ) | 
						
							| 37 | 36 | feq3d |  |-  ( ph -> ( ( F oF .+ G ) : U. dom M --> C <-> ( F oF .+ G ) : U. dom M --> U. ( sigaGen ` ( TopOpen ` K ) ) ) ) | 
						
							| 38 | 29 37 | mpbid |  |-  ( ph -> ( F oF .+ G ) : U. dom M --> U. ( sigaGen ` ( TopOpen ` K ) ) ) | 
						
							| 39 | 33 | a1i |  |-  ( ph -> ( TopOpen ` K ) e. _V ) | 
						
							| 40 | 39 | sgsiga |  |-  ( ph -> ( sigaGen ` ( TopOpen ` K ) ) e. U. ran sigAlgebra ) | 
						
							| 41 | 40 | uniexd |  |-  ( ph -> U. ( sigaGen ` ( TopOpen ` K ) ) e. _V ) | 
						
							| 42 | 41 27 | elmapd |  |-  ( ph -> ( ( F oF .+ G ) e. ( U. ( sigaGen ` ( TopOpen ` K ) ) ^m U. dom M ) <-> ( F oF .+ G ) : U. dom M --> U. ( sigaGen ` ( TopOpen ` K ) ) ) ) | 
						
							| 43 | 38 42 | mpbird |  |-  ( ph -> ( F oF .+ G ) e. ( U. ( sigaGen ` ( TopOpen ` K ) ) ^m U. dom M ) ) | 
						
							| 44 |  | inundif |  |-  ( ( b i^i ran ( F oF .+ G ) ) u. ( b \ ran ( F oF .+ G ) ) ) = b | 
						
							| 45 | 44 | imaeq2i |  |-  ( `' ( F oF .+ G ) " ( ( b i^i ran ( F oF .+ G ) ) u. ( b \ ran ( F oF .+ G ) ) ) ) = ( `' ( F oF .+ G ) " b ) | 
						
							| 46 |  | ffun |  |-  ( ( F oF .+ G ) : U. dom M --> C -> Fun ( F oF .+ G ) ) | 
						
							| 47 |  | unpreima |  |-  ( Fun ( F oF .+ G ) -> ( `' ( F oF .+ G ) " ( ( b i^i ran ( F oF .+ G ) ) u. ( b \ ran ( F oF .+ G ) ) ) ) = ( ( `' ( F oF .+ G ) " ( b i^i ran ( F oF .+ G ) ) ) u. ( `' ( F oF .+ G ) " ( b \ ran ( F oF .+ G ) ) ) ) ) | 
						
							| 48 | 29 46 47 | 3syl |  |-  ( ph -> ( `' ( F oF .+ G ) " ( ( b i^i ran ( F oF .+ G ) ) u. ( b \ ran ( F oF .+ G ) ) ) ) = ( ( `' ( F oF .+ G ) " ( b i^i ran ( F oF .+ G ) ) ) u. ( `' ( F oF .+ G ) " ( b \ ran ( F oF .+ G ) ) ) ) ) | 
						
							| 49 | 48 | adantr |  |-  ( ( ph /\ b e. ( sigaGen ` ( TopOpen ` K ) ) ) -> ( `' ( F oF .+ G ) " ( ( b i^i ran ( F oF .+ G ) ) u. ( b \ ran ( F oF .+ G ) ) ) ) = ( ( `' ( F oF .+ G ) " ( b i^i ran ( F oF .+ G ) ) ) u. ( `' ( F oF .+ G ) " ( b \ ran ( F oF .+ G ) ) ) ) ) | 
						
							| 50 | 45 49 | eqtr3id |  |-  ( ( ph /\ b e. ( sigaGen ` ( TopOpen ` K ) ) ) -> ( `' ( F oF .+ G ) " b ) = ( ( `' ( F oF .+ G ) " ( b i^i ran ( F oF .+ G ) ) ) u. ( `' ( F oF .+ G ) " ( b \ ran ( F oF .+ G ) ) ) ) ) | 
						
							| 51 |  | dmmeas |  |-  ( M e. U. ran measures -> dom M e. U. ran sigAlgebra ) | 
						
							| 52 | 8 51 | syl |  |-  ( ph -> dom M e. U. ran sigAlgebra ) | 
						
							| 53 | 52 | adantr |  |-  ( ( ph /\ b e. ( sigaGen ` ( TopOpen ` K ) ) ) -> dom M e. U. ran sigAlgebra ) | 
						
							| 54 |  | imaiun |  |-  ( `' ( F oF .+ G ) " U_ z e. ( b i^i ran ( F oF .+ G ) ) { z } ) = U_ z e. ( b i^i ran ( F oF .+ G ) ) ( `' ( F oF .+ G ) " { z } ) | 
						
							| 55 |  | iunid |  |-  U_ z e. ( b i^i ran ( F oF .+ G ) ) { z } = ( b i^i ran ( F oF .+ G ) ) | 
						
							| 56 | 55 | imaeq2i |  |-  ( `' ( F oF .+ G ) " U_ z e. ( b i^i ran ( F oF .+ G ) ) { z } ) = ( `' ( F oF .+ G ) " ( b i^i ran ( F oF .+ G ) ) ) | 
						
							| 57 | 54 56 | eqtr3i |  |-  U_ z e. ( b i^i ran ( F oF .+ G ) ) ( `' ( F oF .+ G ) " { z } ) = ( `' ( F oF .+ G ) " ( b i^i ran ( F oF .+ G ) ) ) | 
						
							| 58 |  | inss2 |  |-  ( b i^i ran ( F oF .+ G ) ) C_ ran ( F oF .+ G ) | 
						
							| 59 | 18 | feq3d |  |-  ( ph -> ( F : U. dom M --> B <-> F : U. dom M --> U. J ) ) | 
						
							| 60 | 23 59 | mpbird |  |-  ( ph -> F : U. dom M --> B ) | 
						
							| 61 | 18 | feq3d |  |-  ( ph -> ( G : U. dom M --> B <-> G : U. dom M --> U. J ) ) | 
						
							| 62 | 24 61 | mpbird |  |-  ( ph -> G : U. dom M --> B ) | 
						
							| 63 | 12 | ffnd |  |-  ( ph -> .+ Fn ( B X. B ) ) | 
						
							| 64 | 60 62 27 63 | ofpreima2 |  |-  ( ph -> ( `' ( F oF .+ G ) " { z } ) = U_ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) | 
						
							| 65 | 64 | adantr |  |-  ( ( ph /\ z e. ran ( F oF .+ G ) ) -> ( `' ( F oF .+ G ) " { z } ) = U_ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) | 
						
							| 66 | 52 | adantr |  |-  ( ( ph /\ z e. ran ( F oF .+ G ) ) -> dom M e. U. ran sigAlgebra ) | 
						
							| 67 | 52 | ad2antrr |  |-  ( ( ( ph /\ z e. ran ( F oF .+ G ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> dom M e. U. ran sigAlgebra ) | 
						
							| 68 |  | simpll |  |-  ( ( ( ph /\ z e. ran ( F oF .+ G ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> ph ) | 
						
							| 69 |  | inss1 |  |-  ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) C_ ( `' .+ " { z } ) | 
						
							| 70 |  | cnvimass |  |-  ( `' .+ " { z } ) C_ dom .+ | 
						
							| 71 | 70 12 | fssdm |  |-  ( ph -> ( `' .+ " { z } ) C_ ( B X. B ) ) | 
						
							| 72 | 71 | adantr |  |-  ( ( ph /\ z e. ran ( F oF .+ G ) ) -> ( `' .+ " { z } ) C_ ( B X. B ) ) | 
						
							| 73 | 69 72 | sstrid |  |-  ( ( ph /\ z e. ran ( F oF .+ G ) ) -> ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) C_ ( B X. B ) ) | 
						
							| 74 | 73 | sselda |  |-  ( ( ( ph /\ z e. ran ( F oF .+ G ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> p e. ( B X. B ) ) | 
						
							| 75 | 52 | adantr |  |-  ( ( ph /\ p e. ( B X. B ) ) -> dom M e. U. ran sigAlgebra ) | 
						
							| 76 | 15 | sgsiga |  |-  ( ph -> ( sigaGen ` J ) e. U. ran sigAlgebra ) | 
						
							| 77 | 3 76 | eqeltrid |  |-  ( ph -> S e. U. ran sigAlgebra ) | 
						
							| 78 | 77 | adantr |  |-  ( ( ph /\ p e. ( B X. B ) ) -> S e. U. ran sigAlgebra ) | 
						
							| 79 | 1 2 3 4 5 6 7 8 9 | sibfmbl |  |-  ( ph -> F e. ( dom M MblFnM S ) ) | 
						
							| 80 | 79 | adantr |  |-  ( ( ph /\ p e. ( B X. B ) ) -> F e. ( dom M MblFnM S ) ) | 
						
							| 81 | 2 | tpstop |  |-  ( W e. TopSp -> J e. Top ) | 
						
							| 82 |  | cldssbrsiga |  |-  ( J e. Top -> ( Clsd ` J ) C_ ( sigaGen ` J ) ) | 
						
							| 83 | 11 81 82 | 3syl |  |-  ( ph -> ( Clsd ` J ) C_ ( sigaGen ` J ) ) | 
						
							| 84 | 83 | adantr |  |-  ( ( ph /\ p e. ( B X. B ) ) -> ( Clsd ` J ) C_ ( sigaGen ` J ) ) | 
						
							| 85 | 15 | adantr |  |-  ( ( ph /\ p e. ( B X. B ) ) -> J e. Fre ) | 
						
							| 86 |  | xp1st |  |-  ( p e. ( B X. B ) -> ( 1st ` p ) e. B ) | 
						
							| 87 | 86 | adantl |  |-  ( ( ph /\ p e. ( B X. B ) ) -> ( 1st ` p ) e. B ) | 
						
							| 88 | 18 | adantr |  |-  ( ( ph /\ p e. ( B X. B ) ) -> B = U. J ) | 
						
							| 89 | 87 88 | eleqtrd |  |-  ( ( ph /\ p e. ( B X. B ) ) -> ( 1st ` p ) e. U. J ) | 
						
							| 90 |  | eqid |  |-  U. J = U. J | 
						
							| 91 | 90 | t1sncld |  |-  ( ( J e. Fre /\ ( 1st ` p ) e. U. J ) -> { ( 1st ` p ) } e. ( Clsd ` J ) ) | 
						
							| 92 | 85 89 91 | syl2anc |  |-  ( ( ph /\ p e. ( B X. B ) ) -> { ( 1st ` p ) } e. ( Clsd ` J ) ) | 
						
							| 93 | 84 92 | sseldd |  |-  ( ( ph /\ p e. ( B X. B ) ) -> { ( 1st ` p ) } e. ( sigaGen ` J ) ) | 
						
							| 94 | 93 3 | eleqtrrdi |  |-  ( ( ph /\ p e. ( B X. B ) ) -> { ( 1st ` p ) } e. S ) | 
						
							| 95 | 75 78 80 94 | mbfmcnvima |  |-  ( ( ph /\ p e. ( B X. B ) ) -> ( `' F " { ( 1st ` p ) } ) e. dom M ) | 
						
							| 96 | 68 74 95 | syl2anc |  |-  ( ( ( ph /\ z e. ran ( F oF .+ G ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> ( `' F " { ( 1st ` p ) } ) e. dom M ) | 
						
							| 97 | 1 2 3 4 5 6 7 8 13 | sibfmbl |  |-  ( ph -> G e. ( dom M MblFnM S ) ) | 
						
							| 98 | 97 | adantr |  |-  ( ( ph /\ p e. ( B X. B ) ) -> G e. ( dom M MblFnM S ) ) | 
						
							| 99 |  | xp2nd |  |-  ( p e. ( B X. B ) -> ( 2nd ` p ) e. B ) | 
						
							| 100 | 99 | adantl |  |-  ( ( ph /\ p e. ( B X. B ) ) -> ( 2nd ` p ) e. B ) | 
						
							| 101 | 100 88 | eleqtrd |  |-  ( ( ph /\ p e. ( B X. B ) ) -> ( 2nd ` p ) e. U. J ) | 
						
							| 102 | 90 | t1sncld |  |-  ( ( J e. Fre /\ ( 2nd ` p ) e. U. J ) -> { ( 2nd ` p ) } e. ( Clsd ` J ) ) | 
						
							| 103 | 85 101 102 | syl2anc |  |-  ( ( ph /\ p e. ( B X. B ) ) -> { ( 2nd ` p ) } e. ( Clsd ` J ) ) | 
						
							| 104 | 84 103 | sseldd |  |-  ( ( ph /\ p e. ( B X. B ) ) -> { ( 2nd ` p ) } e. ( sigaGen ` J ) ) | 
						
							| 105 | 104 3 | eleqtrrdi |  |-  ( ( ph /\ p e. ( B X. B ) ) -> { ( 2nd ` p ) } e. S ) | 
						
							| 106 | 75 78 98 105 | mbfmcnvima |  |-  ( ( ph /\ p e. ( B X. B ) ) -> ( `' G " { ( 2nd ` p ) } ) e. dom M ) | 
						
							| 107 | 68 74 106 | syl2anc |  |-  ( ( ( ph /\ z e. ran ( F oF .+ G ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> ( `' G " { ( 2nd ` p ) } ) e. dom M ) | 
						
							| 108 |  | inelsiga |  |-  ( ( dom M e. U. ran sigAlgebra /\ ( `' F " { ( 1st ` p ) } ) e. dom M /\ ( `' G " { ( 2nd ` p ) } ) e. dom M ) -> ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) e. dom M ) | 
						
							| 109 | 67 96 107 108 | syl3anc |  |-  ( ( ( ph /\ z e. ran ( F oF .+ G ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) e. dom M ) | 
						
							| 110 | 109 | ralrimiva |  |-  ( ( ph /\ z e. ran ( F oF .+ G ) ) -> A. p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) e. dom M ) | 
						
							| 111 | 1 2 3 4 5 6 7 8 9 | sibfrn |  |-  ( ph -> ran F e. Fin ) | 
						
							| 112 | 1 2 3 4 5 6 7 8 13 | sibfrn |  |-  ( ph -> ran G e. Fin ) | 
						
							| 113 |  | xpfi |  |-  ( ( ran F e. Fin /\ ran G e. Fin ) -> ( ran F X. ran G ) e. Fin ) | 
						
							| 114 | 111 112 113 | syl2anc |  |-  ( ph -> ( ran F X. ran G ) e. Fin ) | 
						
							| 115 |  | inss2 |  |-  ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) C_ ( ran F X. ran G ) | 
						
							| 116 |  | ssdomg |  |-  ( ( ran F X. ran G ) e. Fin -> ( ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) C_ ( ran F X. ran G ) -> ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ~<_ ( ran F X. ran G ) ) ) | 
						
							| 117 | 114 115 116 | mpisyl |  |-  ( ph -> ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ~<_ ( ran F X. ran G ) ) | 
						
							| 118 |  | isfinite |  |-  ( ( ran F X. ran G ) e. Fin <-> ( ran F X. ran G ) ~< _om ) | 
						
							| 119 | 118 | biimpi |  |-  ( ( ran F X. ran G ) e. Fin -> ( ran F X. ran G ) ~< _om ) | 
						
							| 120 |  | sdomdom |  |-  ( ( ran F X. ran G ) ~< _om -> ( ran F X. ran G ) ~<_ _om ) | 
						
							| 121 | 114 119 120 | 3syl |  |-  ( ph -> ( ran F X. ran G ) ~<_ _om ) | 
						
							| 122 |  | domtr |  |-  ( ( ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ~<_ ( ran F X. ran G ) /\ ( ran F X. ran G ) ~<_ _om ) -> ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ~<_ _om ) | 
						
							| 123 | 117 121 122 | syl2anc |  |-  ( ph -> ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ~<_ _om ) | 
						
							| 124 | 123 | adantr |  |-  ( ( ph /\ z e. ran ( F oF .+ G ) ) -> ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ~<_ _om ) | 
						
							| 125 |  | nfcv |  |-  F/_ p ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) | 
						
							| 126 | 125 | sigaclcuni |  |-  ( ( dom M e. U. ran sigAlgebra /\ A. p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) e. dom M /\ ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ~<_ _om ) -> U_ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) e. dom M ) | 
						
							| 127 | 66 110 124 126 | syl3anc |  |-  ( ( ph /\ z e. ran ( F oF .+ G ) ) -> U_ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) e. dom M ) | 
						
							| 128 | 65 127 | eqeltrd |  |-  ( ( ph /\ z e. ran ( F oF .+ G ) ) -> ( `' ( F oF .+ G ) " { z } ) e. dom M ) | 
						
							| 129 | 128 | ralrimiva |  |-  ( ph -> A. z e. ran ( F oF .+ G ) ( `' ( F oF .+ G ) " { z } ) e. dom M ) | 
						
							| 130 |  | ssralv |  |-  ( ( b i^i ran ( F oF .+ G ) ) C_ ran ( F oF .+ G ) -> ( A. z e. ran ( F oF .+ G ) ( `' ( F oF .+ G ) " { z } ) e. dom M -> A. z e. ( b i^i ran ( F oF .+ G ) ) ( `' ( F oF .+ G ) " { z } ) e. dom M ) ) | 
						
							| 131 | 58 129 130 | mpsyl |  |-  ( ph -> A. z e. ( b i^i ran ( F oF .+ G ) ) ( `' ( F oF .+ G ) " { z } ) e. dom M ) | 
						
							| 132 | 131 | adantr |  |-  ( ( ph /\ b e. ( sigaGen ` ( TopOpen ` K ) ) ) -> A. z e. ( b i^i ran ( F oF .+ G ) ) ( `' ( F oF .+ G ) " { z } ) e. dom M ) | 
						
							| 133 | 12 | ffund |  |-  ( ph -> Fun .+ ) | 
						
							| 134 |  | imafi |  |-  ( ( Fun .+ /\ ( ran F X. ran G ) e. Fin ) -> ( .+ " ( ran F X. ran G ) ) e. Fin ) | 
						
							| 135 | 133 114 134 | syl2anc |  |-  ( ph -> ( .+ " ( ran F X. ran G ) ) e. Fin ) | 
						
							| 136 | 23 24 21 27 | ofrn2 |  |-  ( ph -> ran ( F oF .+ G ) C_ ( .+ " ( ran F X. ran G ) ) ) | 
						
							| 137 |  | ssfi |  |-  ( ( ( .+ " ( ran F X. ran G ) ) e. Fin /\ ran ( F oF .+ G ) C_ ( .+ " ( ran F X. ran G ) ) ) -> ran ( F oF .+ G ) e. Fin ) | 
						
							| 138 | 135 136 137 | syl2anc |  |-  ( ph -> ran ( F oF .+ G ) e. Fin ) | 
						
							| 139 |  | ssdomg |  |-  ( ran ( F oF .+ G ) e. Fin -> ( ( b i^i ran ( F oF .+ G ) ) C_ ran ( F oF .+ G ) -> ( b i^i ran ( F oF .+ G ) ) ~<_ ran ( F oF .+ G ) ) ) | 
						
							| 140 | 138 58 139 | mpisyl |  |-  ( ph -> ( b i^i ran ( F oF .+ G ) ) ~<_ ran ( F oF .+ G ) ) | 
						
							| 141 |  | isfinite |  |-  ( ran ( F oF .+ G ) e. Fin <-> ran ( F oF .+ G ) ~< _om ) | 
						
							| 142 | 138 141 | sylib |  |-  ( ph -> ran ( F oF .+ G ) ~< _om ) | 
						
							| 143 |  | sdomdom |  |-  ( ran ( F oF .+ G ) ~< _om -> ran ( F oF .+ G ) ~<_ _om ) | 
						
							| 144 | 142 143 | syl |  |-  ( ph -> ran ( F oF .+ G ) ~<_ _om ) | 
						
							| 145 |  | domtr |  |-  ( ( ( b i^i ran ( F oF .+ G ) ) ~<_ ran ( F oF .+ G ) /\ ran ( F oF .+ G ) ~<_ _om ) -> ( b i^i ran ( F oF .+ G ) ) ~<_ _om ) | 
						
							| 146 | 140 144 145 | syl2anc |  |-  ( ph -> ( b i^i ran ( F oF .+ G ) ) ~<_ _om ) | 
						
							| 147 | 146 | adantr |  |-  ( ( ph /\ b e. ( sigaGen ` ( TopOpen ` K ) ) ) -> ( b i^i ran ( F oF .+ G ) ) ~<_ _om ) | 
						
							| 148 |  | nfcv |  |-  F/_ z ( b i^i ran ( F oF .+ G ) ) | 
						
							| 149 | 148 | sigaclcuni |  |-  ( ( dom M e. U. ran sigAlgebra /\ A. z e. ( b i^i ran ( F oF .+ G ) ) ( `' ( F oF .+ G ) " { z } ) e. dom M /\ ( b i^i ran ( F oF .+ G ) ) ~<_ _om ) -> U_ z e. ( b i^i ran ( F oF .+ G ) ) ( `' ( F oF .+ G ) " { z } ) e. dom M ) | 
						
							| 150 | 53 132 147 149 | syl3anc |  |-  ( ( ph /\ b e. ( sigaGen ` ( TopOpen ` K ) ) ) -> U_ z e. ( b i^i ran ( F oF .+ G ) ) ( `' ( F oF .+ G ) " { z } ) e. dom M ) | 
						
							| 151 | 57 150 | eqeltrrid |  |-  ( ( ph /\ b e. ( sigaGen ` ( TopOpen ` K ) ) ) -> ( `' ( F oF .+ G ) " ( b i^i ran ( F oF .+ G ) ) ) e. dom M ) | 
						
							| 152 |  | difpreima |  |-  ( Fun ( F oF .+ G ) -> ( `' ( F oF .+ G ) " ( b \ ran ( F oF .+ G ) ) ) = ( ( `' ( F oF .+ G ) " b ) \ ( `' ( F oF .+ G ) " ran ( F oF .+ G ) ) ) ) | 
						
							| 153 | 29 46 152 | 3syl |  |-  ( ph -> ( `' ( F oF .+ G ) " ( b \ ran ( F oF .+ G ) ) ) = ( ( `' ( F oF .+ G ) " b ) \ ( `' ( F oF .+ G ) " ran ( F oF .+ G ) ) ) ) | 
						
							| 154 |  | cnvimarndm |  |-  ( `' ( F oF .+ G ) " ran ( F oF .+ G ) ) = dom ( F oF .+ G ) | 
						
							| 155 | 154 | difeq2i |  |-  ( ( `' ( F oF .+ G ) " b ) \ ( `' ( F oF .+ G ) " ran ( F oF .+ G ) ) ) = ( ( `' ( F oF .+ G ) " b ) \ dom ( F oF .+ G ) ) | 
						
							| 156 |  | cnvimass |  |-  ( `' ( F oF .+ G ) " b ) C_ dom ( F oF .+ G ) | 
						
							| 157 |  | ssdif0 |  |-  ( ( `' ( F oF .+ G ) " b ) C_ dom ( F oF .+ G ) <-> ( ( `' ( F oF .+ G ) " b ) \ dom ( F oF .+ G ) ) = (/) ) | 
						
							| 158 | 156 157 | mpbi |  |-  ( ( `' ( F oF .+ G ) " b ) \ dom ( F oF .+ G ) ) = (/) | 
						
							| 159 | 155 158 | eqtri |  |-  ( ( `' ( F oF .+ G ) " b ) \ ( `' ( F oF .+ G ) " ran ( F oF .+ G ) ) ) = (/) | 
						
							| 160 | 153 159 | eqtrdi |  |-  ( ph -> ( `' ( F oF .+ G ) " ( b \ ran ( F oF .+ G ) ) ) = (/) ) | 
						
							| 161 |  | 0elsiga |  |-  ( dom M e. U. ran sigAlgebra -> (/) e. dom M ) | 
						
							| 162 | 8 51 161 | 3syl |  |-  ( ph -> (/) e. dom M ) | 
						
							| 163 | 160 162 | eqeltrd |  |-  ( ph -> ( `' ( F oF .+ G ) " ( b \ ran ( F oF .+ G ) ) ) e. dom M ) | 
						
							| 164 | 163 | adantr |  |-  ( ( ph /\ b e. ( sigaGen ` ( TopOpen ` K ) ) ) -> ( `' ( F oF .+ G ) " ( b \ ran ( F oF .+ G ) ) ) e. dom M ) | 
						
							| 165 |  | unelsiga |  |-  ( ( dom M e. U. ran sigAlgebra /\ ( `' ( F oF .+ G ) " ( b i^i ran ( F oF .+ G ) ) ) e. dom M /\ ( `' ( F oF .+ G ) " ( b \ ran ( F oF .+ G ) ) ) e. dom M ) -> ( ( `' ( F oF .+ G ) " ( b i^i ran ( F oF .+ G ) ) ) u. ( `' ( F oF .+ G ) " ( b \ ran ( F oF .+ G ) ) ) ) e. dom M ) | 
						
							| 166 | 53 151 164 165 | syl3anc |  |-  ( ( ph /\ b e. ( sigaGen ` ( TopOpen ` K ) ) ) -> ( ( `' ( F oF .+ G ) " ( b i^i ran ( F oF .+ G ) ) ) u. ( `' ( F oF .+ G ) " ( b \ ran ( F oF .+ G ) ) ) ) e. dom M ) | 
						
							| 167 | 50 166 | eqeltrd |  |-  ( ( ph /\ b e. ( sigaGen ` ( TopOpen ` K ) ) ) -> ( `' ( F oF .+ G ) " b ) e. dom M ) | 
						
							| 168 | 167 | ralrimiva |  |-  ( ph -> A. b e. ( sigaGen ` ( TopOpen ` K ) ) ( `' ( F oF .+ G ) " b ) e. dom M ) | 
						
							| 169 | 52 40 | ismbfm |  |-  ( ph -> ( ( F oF .+ G ) e. ( dom M MblFnM ( sigaGen ` ( TopOpen ` K ) ) ) <-> ( ( F oF .+ G ) e. ( U. ( sigaGen ` ( TopOpen ` K ) ) ^m U. dom M ) /\ A. b e. ( sigaGen ` ( TopOpen ` K ) ) ( `' ( F oF .+ G ) " b ) e. dom M ) ) ) | 
						
							| 170 | 43 168 169 | mpbir2and |  |-  ( ph -> ( F oF .+ G ) e. ( dom M MblFnM ( sigaGen ` ( TopOpen ` K ) ) ) ) | 
						
							| 171 | 64 | adantr |  |-  ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) -> ( `' ( F oF .+ G ) " { z } ) = U_ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) | 
						
							| 172 | 171 | fveq2d |  |-  ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) -> ( M ` ( `' ( F oF .+ G ) " { z } ) ) = ( M ` U_ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) ) | 
						
							| 173 |  | measbasedom |  |-  ( M e. U. ran measures <-> M e. ( measures ` dom M ) ) | 
						
							| 174 | 8 173 | sylib |  |-  ( ph -> M e. ( measures ` dom M ) ) | 
						
							| 175 | 174 | adantr |  |-  ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) -> M e. ( measures ` dom M ) ) | 
						
							| 176 |  | eldifi |  |-  ( z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) -> z e. ran ( F oF .+ G ) ) | 
						
							| 177 | 176 110 | sylan2 |  |-  ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) -> A. p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) e. dom M ) | 
						
							| 178 | 123 | adantr |  |-  ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) -> ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ~<_ _om ) | 
						
							| 179 |  | sneq |  |-  ( x = ( 1st ` p ) -> { x } = { ( 1st ` p ) } ) | 
						
							| 180 | 179 | imaeq2d |  |-  ( x = ( 1st ` p ) -> ( `' F " { x } ) = ( `' F " { ( 1st ` p ) } ) ) | 
						
							| 181 |  | sneq |  |-  ( y = ( 2nd ` p ) -> { y } = { ( 2nd ` p ) } ) | 
						
							| 182 | 181 | imaeq2d |  |-  ( y = ( 2nd ` p ) -> ( `' G " { y } ) = ( `' G " { ( 2nd ` p ) } ) ) | 
						
							| 183 | 23 | ffund |  |-  ( ph -> Fun F ) | 
						
							| 184 |  | sndisj |  |-  Disj_ x e. ran F { x } | 
						
							| 185 |  | disjpreima |  |-  ( ( Fun F /\ Disj_ x e. ran F { x } ) -> Disj_ x e. ran F ( `' F " { x } ) ) | 
						
							| 186 | 183 184 185 | sylancl |  |-  ( ph -> Disj_ x e. ran F ( `' F " { x } ) ) | 
						
							| 187 | 24 | ffund |  |-  ( ph -> Fun G ) | 
						
							| 188 |  | sndisj |  |-  Disj_ y e. ran G { y } | 
						
							| 189 |  | disjpreima |  |-  ( ( Fun G /\ Disj_ y e. ran G { y } ) -> Disj_ y e. ran G ( `' G " { y } ) ) | 
						
							| 190 | 187 188 189 | sylancl |  |-  ( ph -> Disj_ y e. ran G ( `' G " { y } ) ) | 
						
							| 191 | 180 182 186 190 | disjxpin |  |-  ( ph -> Disj_ p e. ( ran F X. ran G ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) | 
						
							| 192 |  | disjss1 |  |-  ( ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) C_ ( ran F X. ran G ) -> ( Disj_ p e. ( ran F X. ran G ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) -> Disj_ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) ) | 
						
							| 193 | 115 191 192 | mpsyl |  |-  ( ph -> Disj_ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) | 
						
							| 194 | 193 | adantr |  |-  ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) -> Disj_ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) | 
						
							| 195 |  | measvuni |  |-  ( ( M e. ( measures ` dom M ) /\ A. p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) e. dom M /\ ( ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ~<_ _om /\ Disj_ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) ) -> ( M ` U_ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) = sum* p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( M ` ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) ) | 
						
							| 196 | 175 177 178 194 195 | syl112anc |  |-  ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) -> ( M ` U_ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) = sum* p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( M ` ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) ) | 
						
							| 197 |  | ssfi |  |-  ( ( ( ran F X. ran G ) e. Fin /\ ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) C_ ( ran F X. ran G ) ) -> ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) e. Fin ) | 
						
							| 198 | 114 115 197 | sylancl |  |-  ( ph -> ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) e. Fin ) | 
						
							| 199 | 198 | adantr |  |-  ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) -> ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) e. Fin ) | 
						
							| 200 |  | simpll |  |-  ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> ph ) | 
						
							| 201 |  | simpr |  |-  ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) | 
						
							| 202 | 115 201 | sselid |  |-  ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> p e. ( ran F X. ran G ) ) | 
						
							| 203 |  | xp1st |  |-  ( p e. ( ran F X. ran G ) -> ( 1st ` p ) e. ran F ) | 
						
							| 204 | 202 203 | syl |  |-  ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> ( 1st ` p ) e. ran F ) | 
						
							| 205 |  | xp2nd |  |-  ( p e. ( ran F X. ran G ) -> ( 2nd ` p ) e. ran G ) | 
						
							| 206 | 202 205 | syl |  |-  ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> ( 2nd ` p ) e. ran G ) | 
						
							| 207 |  | oveq12 |  |-  ( ( x = .0. /\ y = .0. ) -> ( x .+ y ) = ( .0. .+ .0. ) ) | 
						
							| 208 | 207 16 | sylan9eqr |  |-  ( ( ph /\ ( x = .0. /\ y = .0. ) ) -> ( x .+ y ) = ( 0g ` K ) ) | 
						
							| 209 | 208 | ex |  |-  ( ph -> ( ( x = .0. /\ y = .0. ) -> ( x .+ y ) = ( 0g ` K ) ) ) | 
						
							| 210 | 209 | necon3ad |  |-  ( ph -> ( ( x .+ y ) =/= ( 0g ` K ) -> -. ( x = .0. /\ y = .0. ) ) ) | 
						
							| 211 |  | neorian |  |-  ( ( x =/= .0. \/ y =/= .0. ) <-> -. ( x = .0. /\ y = .0. ) ) | 
						
							| 212 | 210 211 | imbitrrdi |  |-  ( ph -> ( ( x .+ y ) =/= ( 0g ` K ) -> ( x =/= .0. \/ y =/= .0. ) ) ) | 
						
							| 213 | 212 | adantr |  |-  ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( x .+ y ) =/= ( 0g ` K ) -> ( x =/= .0. \/ y =/= .0. ) ) ) | 
						
							| 214 | 213 | ralrimivva |  |-  ( ph -> A. x e. B A. y e. B ( ( x .+ y ) =/= ( 0g ` K ) -> ( x =/= .0. \/ y =/= .0. ) ) ) | 
						
							| 215 | 200 214 | syl |  |-  ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> A. x e. B A. y e. B ( ( x .+ y ) =/= ( 0g ` K ) -> ( x =/= .0. \/ y =/= .0. ) ) ) | 
						
							| 216 | 69 | a1i |  |-  ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) -> ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) C_ ( `' .+ " { z } ) ) | 
						
							| 217 | 216 | sselda |  |-  ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> p e. ( `' .+ " { z } ) ) | 
						
							| 218 |  | fniniseg |  |-  ( .+ Fn ( B X. B ) -> ( p e. ( `' .+ " { z } ) <-> ( p e. ( B X. B ) /\ ( .+ ` p ) = z ) ) ) | 
						
							| 219 | 200 63 218 | 3syl |  |-  ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> ( p e. ( `' .+ " { z } ) <-> ( p e. ( B X. B ) /\ ( .+ ` p ) = z ) ) ) | 
						
							| 220 | 217 219 | mpbid |  |-  ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> ( p e. ( B X. B ) /\ ( .+ ` p ) = z ) ) | 
						
							| 221 |  | simpr |  |-  ( ( p e. ( B X. B ) /\ ( .+ ` p ) = z ) -> ( .+ ` p ) = z ) | 
						
							| 222 |  | 1st2nd2 |  |-  ( p e. ( B X. B ) -> p = <. ( 1st ` p ) , ( 2nd ` p ) >. ) | 
						
							| 223 | 222 | fveq2d |  |-  ( p e. ( B X. B ) -> ( .+ ` p ) = ( .+ ` <. ( 1st ` p ) , ( 2nd ` p ) >. ) ) | 
						
							| 224 |  | df-ov |  |-  ( ( 1st ` p ) .+ ( 2nd ` p ) ) = ( .+ ` <. ( 1st ` p ) , ( 2nd ` p ) >. ) | 
						
							| 225 | 223 224 | eqtr4di |  |-  ( p e. ( B X. B ) -> ( .+ ` p ) = ( ( 1st ` p ) .+ ( 2nd ` p ) ) ) | 
						
							| 226 | 225 | adantr |  |-  ( ( p e. ( B X. B ) /\ ( .+ ` p ) = z ) -> ( .+ ` p ) = ( ( 1st ` p ) .+ ( 2nd ` p ) ) ) | 
						
							| 227 | 221 226 | eqtr3d |  |-  ( ( p e. ( B X. B ) /\ ( .+ ` p ) = z ) -> z = ( ( 1st ` p ) .+ ( 2nd ` p ) ) ) | 
						
							| 228 | 220 227 | syl |  |-  ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> z = ( ( 1st ` p ) .+ ( 2nd ` p ) ) ) | 
						
							| 229 |  | simplr |  |-  ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) | 
						
							| 230 | 229 | eldifbd |  |-  ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> -. z e. { ( 0g ` K ) } ) | 
						
							| 231 |  | velsn |  |-  ( z e. { ( 0g ` K ) } <-> z = ( 0g ` K ) ) | 
						
							| 232 | 231 | necon3bbii |  |-  ( -. z e. { ( 0g ` K ) } <-> z =/= ( 0g ` K ) ) | 
						
							| 233 | 230 232 | sylib |  |-  ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> z =/= ( 0g ` K ) ) | 
						
							| 234 | 228 233 | eqnetrrd |  |-  ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> ( ( 1st ` p ) .+ ( 2nd ` p ) ) =/= ( 0g ` K ) ) | 
						
							| 235 | 176 74 | sylanl2 |  |-  ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> p e. ( B X. B ) ) | 
						
							| 236 | 235 86 | syl |  |-  ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> ( 1st ` p ) e. B ) | 
						
							| 237 | 235 99 | syl |  |-  ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> ( 2nd ` p ) e. B ) | 
						
							| 238 |  | oveq1 |  |-  ( x = ( 1st ` p ) -> ( x .+ y ) = ( ( 1st ` p ) .+ y ) ) | 
						
							| 239 | 238 | neeq1d |  |-  ( x = ( 1st ` p ) -> ( ( x .+ y ) =/= ( 0g ` K ) <-> ( ( 1st ` p ) .+ y ) =/= ( 0g ` K ) ) ) | 
						
							| 240 |  | neeq1 |  |-  ( x = ( 1st ` p ) -> ( x =/= .0. <-> ( 1st ` p ) =/= .0. ) ) | 
						
							| 241 | 240 | orbi1d |  |-  ( x = ( 1st ` p ) -> ( ( x =/= .0. \/ y =/= .0. ) <-> ( ( 1st ` p ) =/= .0. \/ y =/= .0. ) ) ) | 
						
							| 242 | 239 241 | imbi12d |  |-  ( x = ( 1st ` p ) -> ( ( ( x .+ y ) =/= ( 0g ` K ) -> ( x =/= .0. \/ y =/= .0. ) ) <-> ( ( ( 1st ` p ) .+ y ) =/= ( 0g ` K ) -> ( ( 1st ` p ) =/= .0. \/ y =/= .0. ) ) ) ) | 
						
							| 243 |  | oveq2 |  |-  ( y = ( 2nd ` p ) -> ( ( 1st ` p ) .+ y ) = ( ( 1st ` p ) .+ ( 2nd ` p ) ) ) | 
						
							| 244 | 243 | neeq1d |  |-  ( y = ( 2nd ` p ) -> ( ( ( 1st ` p ) .+ y ) =/= ( 0g ` K ) <-> ( ( 1st ` p ) .+ ( 2nd ` p ) ) =/= ( 0g ` K ) ) ) | 
						
							| 245 |  | neeq1 |  |-  ( y = ( 2nd ` p ) -> ( y =/= .0. <-> ( 2nd ` p ) =/= .0. ) ) | 
						
							| 246 | 245 | orbi2d |  |-  ( y = ( 2nd ` p ) -> ( ( ( 1st ` p ) =/= .0. \/ y =/= .0. ) <-> ( ( 1st ` p ) =/= .0. \/ ( 2nd ` p ) =/= .0. ) ) ) | 
						
							| 247 | 244 246 | imbi12d |  |-  ( y = ( 2nd ` p ) -> ( ( ( ( 1st ` p ) .+ y ) =/= ( 0g ` K ) -> ( ( 1st ` p ) =/= .0. \/ y =/= .0. ) ) <-> ( ( ( 1st ` p ) .+ ( 2nd ` p ) ) =/= ( 0g ` K ) -> ( ( 1st ` p ) =/= .0. \/ ( 2nd ` p ) =/= .0. ) ) ) ) | 
						
							| 248 | 242 247 | rspc2v |  |-  ( ( ( 1st ` p ) e. B /\ ( 2nd ` p ) e. B ) -> ( A. x e. B A. y e. B ( ( x .+ y ) =/= ( 0g ` K ) -> ( x =/= .0. \/ y =/= .0. ) ) -> ( ( ( 1st ` p ) .+ ( 2nd ` p ) ) =/= ( 0g ` K ) -> ( ( 1st ` p ) =/= .0. \/ ( 2nd ` p ) =/= .0. ) ) ) ) | 
						
							| 249 | 236 237 248 | syl2anc |  |-  ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> ( A. x e. B A. y e. B ( ( x .+ y ) =/= ( 0g ` K ) -> ( x =/= .0. \/ y =/= .0. ) ) -> ( ( ( 1st ` p ) .+ ( 2nd ` p ) ) =/= ( 0g ` K ) -> ( ( 1st ` p ) =/= .0. \/ ( 2nd ` p ) =/= .0. ) ) ) ) | 
						
							| 250 | 215 234 249 | mp2d |  |-  ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> ( ( 1st ` p ) =/= .0. \/ ( 2nd ` p ) =/= .0. ) ) | 
						
							| 251 | 1 2 3 4 5 6 7 8 9 13 11 15 | sibfinima |  |-  ( ( ( ph /\ ( 1st ` p ) e. ran F /\ ( 2nd ` p ) e. ran G ) /\ ( ( 1st ` p ) =/= .0. \/ ( 2nd ` p ) =/= .0. ) ) -> ( M ` ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) e. ( 0 [,) +oo ) ) | 
						
							| 252 | 200 204 206 250 251 | syl31anc |  |-  ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> ( M ` ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) e. ( 0 [,) +oo ) ) | 
						
							| 253 | 199 252 | esumpfinval |  |-  ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) -> sum* p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( M ` ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) = sum_ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( M ` ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) ) | 
						
							| 254 | 172 196 253 | 3eqtrd |  |-  ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) -> ( M ` ( `' ( F oF .+ G ) " { z } ) ) = sum_ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( M ` ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) ) | 
						
							| 255 |  | rge0ssre |  |-  ( 0 [,) +oo ) C_ RR | 
						
							| 256 | 255 252 | sselid |  |-  ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> ( M ` ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) e. RR ) | 
						
							| 257 | 199 256 | fsumrecl |  |-  ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) -> sum_ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( M ` ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) e. RR ) | 
						
							| 258 | 254 257 | eqeltrd |  |-  ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) -> ( M ` ( `' ( F oF .+ G ) " { z } ) ) e. RR ) | 
						
							| 259 | 175 | adantr |  |-  ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> M e. ( measures ` dom M ) ) | 
						
							| 260 | 176 109 | sylanl2 |  |-  ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) e. dom M ) | 
						
							| 261 |  | measge0 |  |-  ( ( M e. ( measures ` dom M ) /\ ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) e. dom M ) -> 0 <_ ( M ` ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) ) | 
						
							| 262 | 259 260 261 | syl2anc |  |-  ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> 0 <_ ( M ` ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) ) | 
						
							| 263 | 199 256 262 | fsumge0 |  |-  ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) -> 0 <_ sum_ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( M ` ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) ) | 
						
							| 264 | 263 254 | breqtrrd |  |-  ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) -> 0 <_ ( M ` ( `' ( F oF .+ G ) " { z } ) ) ) | 
						
							| 265 |  | elrege0 |  |-  ( ( M ` ( `' ( F oF .+ G ) " { z } ) ) e. ( 0 [,) +oo ) <-> ( ( M ` ( `' ( F oF .+ G ) " { z } ) ) e. RR /\ 0 <_ ( M ` ( `' ( F oF .+ G ) " { z } ) ) ) ) | 
						
							| 266 | 258 264 265 | sylanbrc |  |-  ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) -> ( M ` ( `' ( F oF .+ G ) " { z } ) ) e. ( 0 [,) +oo ) ) | 
						
							| 267 | 266 | ralrimiva |  |-  ( ph -> A. z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ( M ` ( `' ( F oF .+ G ) " { z } ) ) e. ( 0 [,) +oo ) ) | 
						
							| 268 |  | eqid |  |-  ( sigaGen ` ( TopOpen ` K ) ) = ( sigaGen ` ( TopOpen ` K ) ) | 
						
							| 269 |  | eqid |  |-  ( 0g ` K ) = ( 0g ` K ) | 
						
							| 270 |  | eqid |  |-  ( .s ` K ) = ( .s ` K ) | 
						
							| 271 |  | eqid |  |-  ( RRHom ` ( Scalar ` K ) ) = ( RRHom ` ( Scalar ` K ) ) | 
						
							| 272 | 10 30 268 269 270 271 14 8 | issibf |  |-  ( ph -> ( ( F oF .+ G ) e. dom ( K sitg M ) <-> ( ( F oF .+ G ) e. ( dom M MblFnM ( sigaGen ` ( TopOpen ` K ) ) ) /\ ran ( F oF .+ G ) e. Fin /\ A. z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ( M ` ( `' ( F oF .+ G ) " { z } ) ) e. ( 0 [,) +oo ) ) ) ) | 
						
							| 273 | 170 138 267 272 | mpbir3and |  |-  ( ph -> ( F oF .+ G ) e. dom ( K sitg M ) ) |