| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sitgval.b |
|- B = ( Base ` W ) |
| 2 |
|
sitgval.j |
|- J = ( TopOpen ` W ) |
| 3 |
|
sitgval.s |
|- S = ( sigaGen ` J ) |
| 4 |
|
sitgval.0 |
|- .0. = ( 0g ` W ) |
| 5 |
|
sitgval.x |
|- .x. = ( .s ` W ) |
| 6 |
|
sitgval.h |
|- H = ( RRHom ` ( Scalar ` W ) ) |
| 7 |
|
sitgval.1 |
|- ( ph -> W e. V ) |
| 8 |
|
sitgval.2 |
|- ( ph -> M e. U. ran measures ) |
| 9 |
|
sibfmbl.1 |
|- ( ph -> F e. dom ( W sitg M ) ) |
| 10 |
|
sibfof.c |
|- C = ( Base ` K ) |
| 11 |
|
sibfof.0 |
|- ( ph -> W e. TopSp ) |
| 12 |
|
sibfof.1 |
|- ( ph -> .+ : ( B X. B ) --> C ) |
| 13 |
|
sibfof.2 |
|- ( ph -> G e. dom ( W sitg M ) ) |
| 14 |
|
sibfof.3 |
|- ( ph -> K e. TopSp ) |
| 15 |
|
sibfof.4 |
|- ( ph -> J e. Fre ) |
| 16 |
|
sibfof.5 |
|- ( ph -> ( .0. .+ .0. ) = ( 0g ` K ) ) |
| 17 |
1 2
|
tpsuni |
|- ( W e. TopSp -> B = U. J ) |
| 18 |
11 17
|
syl |
|- ( ph -> B = U. J ) |
| 19 |
18
|
sqxpeqd |
|- ( ph -> ( B X. B ) = ( U. J X. U. J ) ) |
| 20 |
19
|
feq2d |
|- ( ph -> ( .+ : ( B X. B ) --> C <-> .+ : ( U. J X. U. J ) --> C ) ) |
| 21 |
12 20
|
mpbid |
|- ( ph -> .+ : ( U. J X. U. J ) --> C ) |
| 22 |
21
|
fovcdmda |
|- ( ( ph /\ ( z e. U. J /\ x e. U. J ) ) -> ( z .+ x ) e. C ) |
| 23 |
1 2 3 4 5 6 7 8 9
|
sibff |
|- ( ph -> F : U. dom M --> U. J ) |
| 24 |
1 2 3 4 5 6 7 8 13
|
sibff |
|- ( ph -> G : U. dom M --> U. J ) |
| 25 |
|
dmexg |
|- ( M e. U. ran measures -> dom M e. _V ) |
| 26 |
|
uniexg |
|- ( dom M e. _V -> U. dom M e. _V ) |
| 27 |
8 25 26
|
3syl |
|- ( ph -> U. dom M e. _V ) |
| 28 |
|
inidm |
|- ( U. dom M i^i U. dom M ) = U. dom M |
| 29 |
22 23 24 27 27 28
|
off |
|- ( ph -> ( F oF .+ G ) : U. dom M --> C ) |
| 30 |
|
eqid |
|- ( TopOpen ` K ) = ( TopOpen ` K ) |
| 31 |
10 30
|
tpsuni |
|- ( K e. TopSp -> C = U. ( TopOpen ` K ) ) |
| 32 |
14 31
|
syl |
|- ( ph -> C = U. ( TopOpen ` K ) ) |
| 33 |
|
fvex |
|- ( TopOpen ` K ) e. _V |
| 34 |
|
unisg |
|- ( ( TopOpen ` K ) e. _V -> U. ( sigaGen ` ( TopOpen ` K ) ) = U. ( TopOpen ` K ) ) |
| 35 |
33 34
|
ax-mp |
|- U. ( sigaGen ` ( TopOpen ` K ) ) = U. ( TopOpen ` K ) |
| 36 |
32 35
|
eqtr4di |
|- ( ph -> C = U. ( sigaGen ` ( TopOpen ` K ) ) ) |
| 37 |
36
|
feq3d |
|- ( ph -> ( ( F oF .+ G ) : U. dom M --> C <-> ( F oF .+ G ) : U. dom M --> U. ( sigaGen ` ( TopOpen ` K ) ) ) ) |
| 38 |
29 37
|
mpbid |
|- ( ph -> ( F oF .+ G ) : U. dom M --> U. ( sigaGen ` ( TopOpen ` K ) ) ) |
| 39 |
33
|
a1i |
|- ( ph -> ( TopOpen ` K ) e. _V ) |
| 40 |
39
|
sgsiga |
|- ( ph -> ( sigaGen ` ( TopOpen ` K ) ) e. U. ran sigAlgebra ) |
| 41 |
40
|
uniexd |
|- ( ph -> U. ( sigaGen ` ( TopOpen ` K ) ) e. _V ) |
| 42 |
41 27
|
elmapd |
|- ( ph -> ( ( F oF .+ G ) e. ( U. ( sigaGen ` ( TopOpen ` K ) ) ^m U. dom M ) <-> ( F oF .+ G ) : U. dom M --> U. ( sigaGen ` ( TopOpen ` K ) ) ) ) |
| 43 |
38 42
|
mpbird |
|- ( ph -> ( F oF .+ G ) e. ( U. ( sigaGen ` ( TopOpen ` K ) ) ^m U. dom M ) ) |
| 44 |
|
inundif |
|- ( ( b i^i ran ( F oF .+ G ) ) u. ( b \ ran ( F oF .+ G ) ) ) = b |
| 45 |
44
|
imaeq2i |
|- ( `' ( F oF .+ G ) " ( ( b i^i ran ( F oF .+ G ) ) u. ( b \ ran ( F oF .+ G ) ) ) ) = ( `' ( F oF .+ G ) " b ) |
| 46 |
|
ffun |
|- ( ( F oF .+ G ) : U. dom M --> C -> Fun ( F oF .+ G ) ) |
| 47 |
|
unpreima |
|- ( Fun ( F oF .+ G ) -> ( `' ( F oF .+ G ) " ( ( b i^i ran ( F oF .+ G ) ) u. ( b \ ran ( F oF .+ G ) ) ) ) = ( ( `' ( F oF .+ G ) " ( b i^i ran ( F oF .+ G ) ) ) u. ( `' ( F oF .+ G ) " ( b \ ran ( F oF .+ G ) ) ) ) ) |
| 48 |
29 46 47
|
3syl |
|- ( ph -> ( `' ( F oF .+ G ) " ( ( b i^i ran ( F oF .+ G ) ) u. ( b \ ran ( F oF .+ G ) ) ) ) = ( ( `' ( F oF .+ G ) " ( b i^i ran ( F oF .+ G ) ) ) u. ( `' ( F oF .+ G ) " ( b \ ran ( F oF .+ G ) ) ) ) ) |
| 49 |
48
|
adantr |
|- ( ( ph /\ b e. ( sigaGen ` ( TopOpen ` K ) ) ) -> ( `' ( F oF .+ G ) " ( ( b i^i ran ( F oF .+ G ) ) u. ( b \ ran ( F oF .+ G ) ) ) ) = ( ( `' ( F oF .+ G ) " ( b i^i ran ( F oF .+ G ) ) ) u. ( `' ( F oF .+ G ) " ( b \ ran ( F oF .+ G ) ) ) ) ) |
| 50 |
45 49
|
eqtr3id |
|- ( ( ph /\ b e. ( sigaGen ` ( TopOpen ` K ) ) ) -> ( `' ( F oF .+ G ) " b ) = ( ( `' ( F oF .+ G ) " ( b i^i ran ( F oF .+ G ) ) ) u. ( `' ( F oF .+ G ) " ( b \ ran ( F oF .+ G ) ) ) ) ) |
| 51 |
|
dmmeas |
|- ( M e. U. ran measures -> dom M e. U. ran sigAlgebra ) |
| 52 |
8 51
|
syl |
|- ( ph -> dom M e. U. ran sigAlgebra ) |
| 53 |
52
|
adantr |
|- ( ( ph /\ b e. ( sigaGen ` ( TopOpen ` K ) ) ) -> dom M e. U. ran sigAlgebra ) |
| 54 |
|
imaiun |
|- ( `' ( F oF .+ G ) " U_ z e. ( b i^i ran ( F oF .+ G ) ) { z } ) = U_ z e. ( b i^i ran ( F oF .+ G ) ) ( `' ( F oF .+ G ) " { z } ) |
| 55 |
|
iunid |
|- U_ z e. ( b i^i ran ( F oF .+ G ) ) { z } = ( b i^i ran ( F oF .+ G ) ) |
| 56 |
55
|
imaeq2i |
|- ( `' ( F oF .+ G ) " U_ z e. ( b i^i ran ( F oF .+ G ) ) { z } ) = ( `' ( F oF .+ G ) " ( b i^i ran ( F oF .+ G ) ) ) |
| 57 |
54 56
|
eqtr3i |
|- U_ z e. ( b i^i ran ( F oF .+ G ) ) ( `' ( F oF .+ G ) " { z } ) = ( `' ( F oF .+ G ) " ( b i^i ran ( F oF .+ G ) ) ) |
| 58 |
|
inss2 |
|- ( b i^i ran ( F oF .+ G ) ) C_ ran ( F oF .+ G ) |
| 59 |
18
|
feq3d |
|- ( ph -> ( F : U. dom M --> B <-> F : U. dom M --> U. J ) ) |
| 60 |
23 59
|
mpbird |
|- ( ph -> F : U. dom M --> B ) |
| 61 |
18
|
feq3d |
|- ( ph -> ( G : U. dom M --> B <-> G : U. dom M --> U. J ) ) |
| 62 |
24 61
|
mpbird |
|- ( ph -> G : U. dom M --> B ) |
| 63 |
12
|
ffnd |
|- ( ph -> .+ Fn ( B X. B ) ) |
| 64 |
60 62 27 63
|
ofpreima2 |
|- ( ph -> ( `' ( F oF .+ G ) " { z } ) = U_ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) |
| 65 |
64
|
adantr |
|- ( ( ph /\ z e. ran ( F oF .+ G ) ) -> ( `' ( F oF .+ G ) " { z } ) = U_ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) |
| 66 |
52
|
adantr |
|- ( ( ph /\ z e. ran ( F oF .+ G ) ) -> dom M e. U. ran sigAlgebra ) |
| 67 |
52
|
ad2antrr |
|- ( ( ( ph /\ z e. ran ( F oF .+ G ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> dom M e. U. ran sigAlgebra ) |
| 68 |
|
simpll |
|- ( ( ( ph /\ z e. ran ( F oF .+ G ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> ph ) |
| 69 |
|
inss1 |
|- ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) C_ ( `' .+ " { z } ) |
| 70 |
|
cnvimass |
|- ( `' .+ " { z } ) C_ dom .+ |
| 71 |
70 12
|
fssdm |
|- ( ph -> ( `' .+ " { z } ) C_ ( B X. B ) ) |
| 72 |
71
|
adantr |
|- ( ( ph /\ z e. ran ( F oF .+ G ) ) -> ( `' .+ " { z } ) C_ ( B X. B ) ) |
| 73 |
69 72
|
sstrid |
|- ( ( ph /\ z e. ran ( F oF .+ G ) ) -> ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) C_ ( B X. B ) ) |
| 74 |
73
|
sselda |
|- ( ( ( ph /\ z e. ran ( F oF .+ G ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> p e. ( B X. B ) ) |
| 75 |
52
|
adantr |
|- ( ( ph /\ p e. ( B X. B ) ) -> dom M e. U. ran sigAlgebra ) |
| 76 |
15
|
sgsiga |
|- ( ph -> ( sigaGen ` J ) e. U. ran sigAlgebra ) |
| 77 |
3 76
|
eqeltrid |
|- ( ph -> S e. U. ran sigAlgebra ) |
| 78 |
77
|
adantr |
|- ( ( ph /\ p e. ( B X. B ) ) -> S e. U. ran sigAlgebra ) |
| 79 |
1 2 3 4 5 6 7 8 9
|
sibfmbl |
|- ( ph -> F e. ( dom M MblFnM S ) ) |
| 80 |
79
|
adantr |
|- ( ( ph /\ p e. ( B X. B ) ) -> F e. ( dom M MblFnM S ) ) |
| 81 |
2
|
tpstop |
|- ( W e. TopSp -> J e. Top ) |
| 82 |
|
cldssbrsiga |
|- ( J e. Top -> ( Clsd ` J ) C_ ( sigaGen ` J ) ) |
| 83 |
11 81 82
|
3syl |
|- ( ph -> ( Clsd ` J ) C_ ( sigaGen ` J ) ) |
| 84 |
83
|
adantr |
|- ( ( ph /\ p e. ( B X. B ) ) -> ( Clsd ` J ) C_ ( sigaGen ` J ) ) |
| 85 |
15
|
adantr |
|- ( ( ph /\ p e. ( B X. B ) ) -> J e. Fre ) |
| 86 |
|
xp1st |
|- ( p e. ( B X. B ) -> ( 1st ` p ) e. B ) |
| 87 |
86
|
adantl |
|- ( ( ph /\ p e. ( B X. B ) ) -> ( 1st ` p ) e. B ) |
| 88 |
18
|
adantr |
|- ( ( ph /\ p e. ( B X. B ) ) -> B = U. J ) |
| 89 |
87 88
|
eleqtrd |
|- ( ( ph /\ p e. ( B X. B ) ) -> ( 1st ` p ) e. U. J ) |
| 90 |
|
eqid |
|- U. J = U. J |
| 91 |
90
|
t1sncld |
|- ( ( J e. Fre /\ ( 1st ` p ) e. U. J ) -> { ( 1st ` p ) } e. ( Clsd ` J ) ) |
| 92 |
85 89 91
|
syl2anc |
|- ( ( ph /\ p e. ( B X. B ) ) -> { ( 1st ` p ) } e. ( Clsd ` J ) ) |
| 93 |
84 92
|
sseldd |
|- ( ( ph /\ p e. ( B X. B ) ) -> { ( 1st ` p ) } e. ( sigaGen ` J ) ) |
| 94 |
93 3
|
eleqtrrdi |
|- ( ( ph /\ p e. ( B X. B ) ) -> { ( 1st ` p ) } e. S ) |
| 95 |
75 78 80 94
|
mbfmcnvima |
|- ( ( ph /\ p e. ( B X. B ) ) -> ( `' F " { ( 1st ` p ) } ) e. dom M ) |
| 96 |
68 74 95
|
syl2anc |
|- ( ( ( ph /\ z e. ran ( F oF .+ G ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> ( `' F " { ( 1st ` p ) } ) e. dom M ) |
| 97 |
1 2 3 4 5 6 7 8 13
|
sibfmbl |
|- ( ph -> G e. ( dom M MblFnM S ) ) |
| 98 |
97
|
adantr |
|- ( ( ph /\ p e. ( B X. B ) ) -> G e. ( dom M MblFnM S ) ) |
| 99 |
|
xp2nd |
|- ( p e. ( B X. B ) -> ( 2nd ` p ) e. B ) |
| 100 |
99
|
adantl |
|- ( ( ph /\ p e. ( B X. B ) ) -> ( 2nd ` p ) e. B ) |
| 101 |
100 88
|
eleqtrd |
|- ( ( ph /\ p e. ( B X. B ) ) -> ( 2nd ` p ) e. U. J ) |
| 102 |
90
|
t1sncld |
|- ( ( J e. Fre /\ ( 2nd ` p ) e. U. J ) -> { ( 2nd ` p ) } e. ( Clsd ` J ) ) |
| 103 |
85 101 102
|
syl2anc |
|- ( ( ph /\ p e. ( B X. B ) ) -> { ( 2nd ` p ) } e. ( Clsd ` J ) ) |
| 104 |
84 103
|
sseldd |
|- ( ( ph /\ p e. ( B X. B ) ) -> { ( 2nd ` p ) } e. ( sigaGen ` J ) ) |
| 105 |
104 3
|
eleqtrrdi |
|- ( ( ph /\ p e. ( B X. B ) ) -> { ( 2nd ` p ) } e. S ) |
| 106 |
75 78 98 105
|
mbfmcnvima |
|- ( ( ph /\ p e. ( B X. B ) ) -> ( `' G " { ( 2nd ` p ) } ) e. dom M ) |
| 107 |
68 74 106
|
syl2anc |
|- ( ( ( ph /\ z e. ran ( F oF .+ G ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> ( `' G " { ( 2nd ` p ) } ) e. dom M ) |
| 108 |
|
inelsiga |
|- ( ( dom M e. U. ran sigAlgebra /\ ( `' F " { ( 1st ` p ) } ) e. dom M /\ ( `' G " { ( 2nd ` p ) } ) e. dom M ) -> ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) e. dom M ) |
| 109 |
67 96 107 108
|
syl3anc |
|- ( ( ( ph /\ z e. ran ( F oF .+ G ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) e. dom M ) |
| 110 |
109
|
ralrimiva |
|- ( ( ph /\ z e. ran ( F oF .+ G ) ) -> A. p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) e. dom M ) |
| 111 |
1 2 3 4 5 6 7 8 9
|
sibfrn |
|- ( ph -> ran F e. Fin ) |
| 112 |
1 2 3 4 5 6 7 8 13
|
sibfrn |
|- ( ph -> ran G e. Fin ) |
| 113 |
|
xpfi |
|- ( ( ran F e. Fin /\ ran G e. Fin ) -> ( ran F X. ran G ) e. Fin ) |
| 114 |
111 112 113
|
syl2anc |
|- ( ph -> ( ran F X. ran G ) e. Fin ) |
| 115 |
|
inss2 |
|- ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) C_ ( ran F X. ran G ) |
| 116 |
|
ssdomg |
|- ( ( ran F X. ran G ) e. Fin -> ( ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) C_ ( ran F X. ran G ) -> ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ~<_ ( ran F X. ran G ) ) ) |
| 117 |
114 115 116
|
mpisyl |
|- ( ph -> ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ~<_ ( ran F X. ran G ) ) |
| 118 |
|
isfinite |
|- ( ( ran F X. ran G ) e. Fin <-> ( ran F X. ran G ) ~< _om ) |
| 119 |
118
|
biimpi |
|- ( ( ran F X. ran G ) e. Fin -> ( ran F X. ran G ) ~< _om ) |
| 120 |
|
sdomdom |
|- ( ( ran F X. ran G ) ~< _om -> ( ran F X. ran G ) ~<_ _om ) |
| 121 |
114 119 120
|
3syl |
|- ( ph -> ( ran F X. ran G ) ~<_ _om ) |
| 122 |
|
domtr |
|- ( ( ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ~<_ ( ran F X. ran G ) /\ ( ran F X. ran G ) ~<_ _om ) -> ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ~<_ _om ) |
| 123 |
117 121 122
|
syl2anc |
|- ( ph -> ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ~<_ _om ) |
| 124 |
123
|
adantr |
|- ( ( ph /\ z e. ran ( F oF .+ G ) ) -> ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ~<_ _om ) |
| 125 |
|
nfcv |
|- F/_ p ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) |
| 126 |
125
|
sigaclcuni |
|- ( ( dom M e. U. ran sigAlgebra /\ A. p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) e. dom M /\ ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ~<_ _om ) -> U_ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) e. dom M ) |
| 127 |
66 110 124 126
|
syl3anc |
|- ( ( ph /\ z e. ran ( F oF .+ G ) ) -> U_ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) e. dom M ) |
| 128 |
65 127
|
eqeltrd |
|- ( ( ph /\ z e. ran ( F oF .+ G ) ) -> ( `' ( F oF .+ G ) " { z } ) e. dom M ) |
| 129 |
128
|
ralrimiva |
|- ( ph -> A. z e. ran ( F oF .+ G ) ( `' ( F oF .+ G ) " { z } ) e. dom M ) |
| 130 |
|
ssralv |
|- ( ( b i^i ran ( F oF .+ G ) ) C_ ran ( F oF .+ G ) -> ( A. z e. ran ( F oF .+ G ) ( `' ( F oF .+ G ) " { z } ) e. dom M -> A. z e. ( b i^i ran ( F oF .+ G ) ) ( `' ( F oF .+ G ) " { z } ) e. dom M ) ) |
| 131 |
58 129 130
|
mpsyl |
|- ( ph -> A. z e. ( b i^i ran ( F oF .+ G ) ) ( `' ( F oF .+ G ) " { z } ) e. dom M ) |
| 132 |
131
|
adantr |
|- ( ( ph /\ b e. ( sigaGen ` ( TopOpen ` K ) ) ) -> A. z e. ( b i^i ran ( F oF .+ G ) ) ( `' ( F oF .+ G ) " { z } ) e. dom M ) |
| 133 |
12
|
ffund |
|- ( ph -> Fun .+ ) |
| 134 |
|
imafi |
|- ( ( Fun .+ /\ ( ran F X. ran G ) e. Fin ) -> ( .+ " ( ran F X. ran G ) ) e. Fin ) |
| 135 |
133 114 134
|
syl2anc |
|- ( ph -> ( .+ " ( ran F X. ran G ) ) e. Fin ) |
| 136 |
23 24 21 27
|
ofrn2 |
|- ( ph -> ran ( F oF .+ G ) C_ ( .+ " ( ran F X. ran G ) ) ) |
| 137 |
|
ssfi |
|- ( ( ( .+ " ( ran F X. ran G ) ) e. Fin /\ ran ( F oF .+ G ) C_ ( .+ " ( ran F X. ran G ) ) ) -> ran ( F oF .+ G ) e. Fin ) |
| 138 |
135 136 137
|
syl2anc |
|- ( ph -> ran ( F oF .+ G ) e. Fin ) |
| 139 |
|
ssdomg |
|- ( ran ( F oF .+ G ) e. Fin -> ( ( b i^i ran ( F oF .+ G ) ) C_ ran ( F oF .+ G ) -> ( b i^i ran ( F oF .+ G ) ) ~<_ ran ( F oF .+ G ) ) ) |
| 140 |
138 58 139
|
mpisyl |
|- ( ph -> ( b i^i ran ( F oF .+ G ) ) ~<_ ran ( F oF .+ G ) ) |
| 141 |
|
isfinite |
|- ( ran ( F oF .+ G ) e. Fin <-> ran ( F oF .+ G ) ~< _om ) |
| 142 |
138 141
|
sylib |
|- ( ph -> ran ( F oF .+ G ) ~< _om ) |
| 143 |
|
sdomdom |
|- ( ran ( F oF .+ G ) ~< _om -> ran ( F oF .+ G ) ~<_ _om ) |
| 144 |
142 143
|
syl |
|- ( ph -> ran ( F oF .+ G ) ~<_ _om ) |
| 145 |
|
domtr |
|- ( ( ( b i^i ran ( F oF .+ G ) ) ~<_ ran ( F oF .+ G ) /\ ran ( F oF .+ G ) ~<_ _om ) -> ( b i^i ran ( F oF .+ G ) ) ~<_ _om ) |
| 146 |
140 144 145
|
syl2anc |
|- ( ph -> ( b i^i ran ( F oF .+ G ) ) ~<_ _om ) |
| 147 |
146
|
adantr |
|- ( ( ph /\ b e. ( sigaGen ` ( TopOpen ` K ) ) ) -> ( b i^i ran ( F oF .+ G ) ) ~<_ _om ) |
| 148 |
|
nfcv |
|- F/_ z ( b i^i ran ( F oF .+ G ) ) |
| 149 |
148
|
sigaclcuni |
|- ( ( dom M e. U. ran sigAlgebra /\ A. z e. ( b i^i ran ( F oF .+ G ) ) ( `' ( F oF .+ G ) " { z } ) e. dom M /\ ( b i^i ran ( F oF .+ G ) ) ~<_ _om ) -> U_ z e. ( b i^i ran ( F oF .+ G ) ) ( `' ( F oF .+ G ) " { z } ) e. dom M ) |
| 150 |
53 132 147 149
|
syl3anc |
|- ( ( ph /\ b e. ( sigaGen ` ( TopOpen ` K ) ) ) -> U_ z e. ( b i^i ran ( F oF .+ G ) ) ( `' ( F oF .+ G ) " { z } ) e. dom M ) |
| 151 |
57 150
|
eqeltrrid |
|- ( ( ph /\ b e. ( sigaGen ` ( TopOpen ` K ) ) ) -> ( `' ( F oF .+ G ) " ( b i^i ran ( F oF .+ G ) ) ) e. dom M ) |
| 152 |
|
difpreima |
|- ( Fun ( F oF .+ G ) -> ( `' ( F oF .+ G ) " ( b \ ran ( F oF .+ G ) ) ) = ( ( `' ( F oF .+ G ) " b ) \ ( `' ( F oF .+ G ) " ran ( F oF .+ G ) ) ) ) |
| 153 |
29 46 152
|
3syl |
|- ( ph -> ( `' ( F oF .+ G ) " ( b \ ran ( F oF .+ G ) ) ) = ( ( `' ( F oF .+ G ) " b ) \ ( `' ( F oF .+ G ) " ran ( F oF .+ G ) ) ) ) |
| 154 |
|
cnvimarndm |
|- ( `' ( F oF .+ G ) " ran ( F oF .+ G ) ) = dom ( F oF .+ G ) |
| 155 |
154
|
difeq2i |
|- ( ( `' ( F oF .+ G ) " b ) \ ( `' ( F oF .+ G ) " ran ( F oF .+ G ) ) ) = ( ( `' ( F oF .+ G ) " b ) \ dom ( F oF .+ G ) ) |
| 156 |
|
cnvimass |
|- ( `' ( F oF .+ G ) " b ) C_ dom ( F oF .+ G ) |
| 157 |
|
ssdif0 |
|- ( ( `' ( F oF .+ G ) " b ) C_ dom ( F oF .+ G ) <-> ( ( `' ( F oF .+ G ) " b ) \ dom ( F oF .+ G ) ) = (/) ) |
| 158 |
156 157
|
mpbi |
|- ( ( `' ( F oF .+ G ) " b ) \ dom ( F oF .+ G ) ) = (/) |
| 159 |
155 158
|
eqtri |
|- ( ( `' ( F oF .+ G ) " b ) \ ( `' ( F oF .+ G ) " ran ( F oF .+ G ) ) ) = (/) |
| 160 |
153 159
|
eqtrdi |
|- ( ph -> ( `' ( F oF .+ G ) " ( b \ ran ( F oF .+ G ) ) ) = (/) ) |
| 161 |
|
0elsiga |
|- ( dom M e. U. ran sigAlgebra -> (/) e. dom M ) |
| 162 |
8 51 161
|
3syl |
|- ( ph -> (/) e. dom M ) |
| 163 |
160 162
|
eqeltrd |
|- ( ph -> ( `' ( F oF .+ G ) " ( b \ ran ( F oF .+ G ) ) ) e. dom M ) |
| 164 |
163
|
adantr |
|- ( ( ph /\ b e. ( sigaGen ` ( TopOpen ` K ) ) ) -> ( `' ( F oF .+ G ) " ( b \ ran ( F oF .+ G ) ) ) e. dom M ) |
| 165 |
|
unelsiga |
|- ( ( dom M e. U. ran sigAlgebra /\ ( `' ( F oF .+ G ) " ( b i^i ran ( F oF .+ G ) ) ) e. dom M /\ ( `' ( F oF .+ G ) " ( b \ ran ( F oF .+ G ) ) ) e. dom M ) -> ( ( `' ( F oF .+ G ) " ( b i^i ran ( F oF .+ G ) ) ) u. ( `' ( F oF .+ G ) " ( b \ ran ( F oF .+ G ) ) ) ) e. dom M ) |
| 166 |
53 151 164 165
|
syl3anc |
|- ( ( ph /\ b e. ( sigaGen ` ( TopOpen ` K ) ) ) -> ( ( `' ( F oF .+ G ) " ( b i^i ran ( F oF .+ G ) ) ) u. ( `' ( F oF .+ G ) " ( b \ ran ( F oF .+ G ) ) ) ) e. dom M ) |
| 167 |
50 166
|
eqeltrd |
|- ( ( ph /\ b e. ( sigaGen ` ( TopOpen ` K ) ) ) -> ( `' ( F oF .+ G ) " b ) e. dom M ) |
| 168 |
167
|
ralrimiva |
|- ( ph -> A. b e. ( sigaGen ` ( TopOpen ` K ) ) ( `' ( F oF .+ G ) " b ) e. dom M ) |
| 169 |
52 40
|
ismbfm |
|- ( ph -> ( ( F oF .+ G ) e. ( dom M MblFnM ( sigaGen ` ( TopOpen ` K ) ) ) <-> ( ( F oF .+ G ) e. ( U. ( sigaGen ` ( TopOpen ` K ) ) ^m U. dom M ) /\ A. b e. ( sigaGen ` ( TopOpen ` K ) ) ( `' ( F oF .+ G ) " b ) e. dom M ) ) ) |
| 170 |
43 168 169
|
mpbir2and |
|- ( ph -> ( F oF .+ G ) e. ( dom M MblFnM ( sigaGen ` ( TopOpen ` K ) ) ) ) |
| 171 |
64
|
adantr |
|- ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) -> ( `' ( F oF .+ G ) " { z } ) = U_ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) |
| 172 |
171
|
fveq2d |
|- ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) -> ( M ` ( `' ( F oF .+ G ) " { z } ) ) = ( M ` U_ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) ) |
| 173 |
|
measbasedom |
|- ( M e. U. ran measures <-> M e. ( measures ` dom M ) ) |
| 174 |
8 173
|
sylib |
|- ( ph -> M e. ( measures ` dom M ) ) |
| 175 |
174
|
adantr |
|- ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) -> M e. ( measures ` dom M ) ) |
| 176 |
|
eldifi |
|- ( z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) -> z e. ran ( F oF .+ G ) ) |
| 177 |
176 110
|
sylan2 |
|- ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) -> A. p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) e. dom M ) |
| 178 |
123
|
adantr |
|- ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) -> ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ~<_ _om ) |
| 179 |
|
sneq |
|- ( x = ( 1st ` p ) -> { x } = { ( 1st ` p ) } ) |
| 180 |
179
|
imaeq2d |
|- ( x = ( 1st ` p ) -> ( `' F " { x } ) = ( `' F " { ( 1st ` p ) } ) ) |
| 181 |
|
sneq |
|- ( y = ( 2nd ` p ) -> { y } = { ( 2nd ` p ) } ) |
| 182 |
181
|
imaeq2d |
|- ( y = ( 2nd ` p ) -> ( `' G " { y } ) = ( `' G " { ( 2nd ` p ) } ) ) |
| 183 |
23
|
ffund |
|- ( ph -> Fun F ) |
| 184 |
|
sndisj |
|- Disj_ x e. ran F { x } |
| 185 |
|
disjpreima |
|- ( ( Fun F /\ Disj_ x e. ran F { x } ) -> Disj_ x e. ran F ( `' F " { x } ) ) |
| 186 |
183 184 185
|
sylancl |
|- ( ph -> Disj_ x e. ran F ( `' F " { x } ) ) |
| 187 |
24
|
ffund |
|- ( ph -> Fun G ) |
| 188 |
|
sndisj |
|- Disj_ y e. ran G { y } |
| 189 |
|
disjpreima |
|- ( ( Fun G /\ Disj_ y e. ran G { y } ) -> Disj_ y e. ran G ( `' G " { y } ) ) |
| 190 |
187 188 189
|
sylancl |
|- ( ph -> Disj_ y e. ran G ( `' G " { y } ) ) |
| 191 |
180 182 186 190
|
disjxpin |
|- ( ph -> Disj_ p e. ( ran F X. ran G ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) |
| 192 |
|
disjss1 |
|- ( ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) C_ ( ran F X. ran G ) -> ( Disj_ p e. ( ran F X. ran G ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) -> Disj_ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) ) |
| 193 |
115 191 192
|
mpsyl |
|- ( ph -> Disj_ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) |
| 194 |
193
|
adantr |
|- ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) -> Disj_ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) |
| 195 |
|
measvuni |
|- ( ( M e. ( measures ` dom M ) /\ A. p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) e. dom M /\ ( ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ~<_ _om /\ Disj_ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) ) -> ( M ` U_ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) = sum* p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( M ` ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) ) |
| 196 |
175 177 178 194 195
|
syl112anc |
|- ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) -> ( M ` U_ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) = sum* p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( M ` ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) ) |
| 197 |
|
ssfi |
|- ( ( ( ran F X. ran G ) e. Fin /\ ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) C_ ( ran F X. ran G ) ) -> ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) e. Fin ) |
| 198 |
114 115 197
|
sylancl |
|- ( ph -> ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) e. Fin ) |
| 199 |
198
|
adantr |
|- ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) -> ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) e. Fin ) |
| 200 |
|
simpll |
|- ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> ph ) |
| 201 |
|
simpr |
|- ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) |
| 202 |
115 201
|
sselid |
|- ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> p e. ( ran F X. ran G ) ) |
| 203 |
|
xp1st |
|- ( p e. ( ran F X. ran G ) -> ( 1st ` p ) e. ran F ) |
| 204 |
202 203
|
syl |
|- ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> ( 1st ` p ) e. ran F ) |
| 205 |
|
xp2nd |
|- ( p e. ( ran F X. ran G ) -> ( 2nd ` p ) e. ran G ) |
| 206 |
202 205
|
syl |
|- ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> ( 2nd ` p ) e. ran G ) |
| 207 |
|
oveq12 |
|- ( ( x = .0. /\ y = .0. ) -> ( x .+ y ) = ( .0. .+ .0. ) ) |
| 208 |
207 16
|
sylan9eqr |
|- ( ( ph /\ ( x = .0. /\ y = .0. ) ) -> ( x .+ y ) = ( 0g ` K ) ) |
| 209 |
208
|
ex |
|- ( ph -> ( ( x = .0. /\ y = .0. ) -> ( x .+ y ) = ( 0g ` K ) ) ) |
| 210 |
209
|
necon3ad |
|- ( ph -> ( ( x .+ y ) =/= ( 0g ` K ) -> -. ( x = .0. /\ y = .0. ) ) ) |
| 211 |
|
neorian |
|- ( ( x =/= .0. \/ y =/= .0. ) <-> -. ( x = .0. /\ y = .0. ) ) |
| 212 |
210 211
|
imbitrrdi |
|- ( ph -> ( ( x .+ y ) =/= ( 0g ` K ) -> ( x =/= .0. \/ y =/= .0. ) ) ) |
| 213 |
212
|
adantr |
|- ( ( ph /\ ( x e. B /\ y e. B ) ) -> ( ( x .+ y ) =/= ( 0g ` K ) -> ( x =/= .0. \/ y =/= .0. ) ) ) |
| 214 |
213
|
ralrimivva |
|- ( ph -> A. x e. B A. y e. B ( ( x .+ y ) =/= ( 0g ` K ) -> ( x =/= .0. \/ y =/= .0. ) ) ) |
| 215 |
200 214
|
syl |
|- ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> A. x e. B A. y e. B ( ( x .+ y ) =/= ( 0g ` K ) -> ( x =/= .0. \/ y =/= .0. ) ) ) |
| 216 |
69
|
a1i |
|- ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) -> ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) C_ ( `' .+ " { z } ) ) |
| 217 |
216
|
sselda |
|- ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> p e. ( `' .+ " { z } ) ) |
| 218 |
|
fniniseg |
|- ( .+ Fn ( B X. B ) -> ( p e. ( `' .+ " { z } ) <-> ( p e. ( B X. B ) /\ ( .+ ` p ) = z ) ) ) |
| 219 |
200 63 218
|
3syl |
|- ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> ( p e. ( `' .+ " { z } ) <-> ( p e. ( B X. B ) /\ ( .+ ` p ) = z ) ) ) |
| 220 |
217 219
|
mpbid |
|- ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> ( p e. ( B X. B ) /\ ( .+ ` p ) = z ) ) |
| 221 |
|
simpr |
|- ( ( p e. ( B X. B ) /\ ( .+ ` p ) = z ) -> ( .+ ` p ) = z ) |
| 222 |
|
1st2nd2 |
|- ( p e. ( B X. B ) -> p = <. ( 1st ` p ) , ( 2nd ` p ) >. ) |
| 223 |
222
|
fveq2d |
|- ( p e. ( B X. B ) -> ( .+ ` p ) = ( .+ ` <. ( 1st ` p ) , ( 2nd ` p ) >. ) ) |
| 224 |
|
df-ov |
|- ( ( 1st ` p ) .+ ( 2nd ` p ) ) = ( .+ ` <. ( 1st ` p ) , ( 2nd ` p ) >. ) |
| 225 |
223 224
|
eqtr4di |
|- ( p e. ( B X. B ) -> ( .+ ` p ) = ( ( 1st ` p ) .+ ( 2nd ` p ) ) ) |
| 226 |
225
|
adantr |
|- ( ( p e. ( B X. B ) /\ ( .+ ` p ) = z ) -> ( .+ ` p ) = ( ( 1st ` p ) .+ ( 2nd ` p ) ) ) |
| 227 |
221 226
|
eqtr3d |
|- ( ( p e. ( B X. B ) /\ ( .+ ` p ) = z ) -> z = ( ( 1st ` p ) .+ ( 2nd ` p ) ) ) |
| 228 |
220 227
|
syl |
|- ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> z = ( ( 1st ` p ) .+ ( 2nd ` p ) ) ) |
| 229 |
|
simplr |
|- ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) |
| 230 |
229
|
eldifbd |
|- ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> -. z e. { ( 0g ` K ) } ) |
| 231 |
|
velsn |
|- ( z e. { ( 0g ` K ) } <-> z = ( 0g ` K ) ) |
| 232 |
231
|
necon3bbii |
|- ( -. z e. { ( 0g ` K ) } <-> z =/= ( 0g ` K ) ) |
| 233 |
230 232
|
sylib |
|- ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> z =/= ( 0g ` K ) ) |
| 234 |
228 233
|
eqnetrrd |
|- ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> ( ( 1st ` p ) .+ ( 2nd ` p ) ) =/= ( 0g ` K ) ) |
| 235 |
176 74
|
sylanl2 |
|- ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> p e. ( B X. B ) ) |
| 236 |
235 86
|
syl |
|- ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> ( 1st ` p ) e. B ) |
| 237 |
235 99
|
syl |
|- ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> ( 2nd ` p ) e. B ) |
| 238 |
|
oveq1 |
|- ( x = ( 1st ` p ) -> ( x .+ y ) = ( ( 1st ` p ) .+ y ) ) |
| 239 |
238
|
neeq1d |
|- ( x = ( 1st ` p ) -> ( ( x .+ y ) =/= ( 0g ` K ) <-> ( ( 1st ` p ) .+ y ) =/= ( 0g ` K ) ) ) |
| 240 |
|
neeq1 |
|- ( x = ( 1st ` p ) -> ( x =/= .0. <-> ( 1st ` p ) =/= .0. ) ) |
| 241 |
240
|
orbi1d |
|- ( x = ( 1st ` p ) -> ( ( x =/= .0. \/ y =/= .0. ) <-> ( ( 1st ` p ) =/= .0. \/ y =/= .0. ) ) ) |
| 242 |
239 241
|
imbi12d |
|- ( x = ( 1st ` p ) -> ( ( ( x .+ y ) =/= ( 0g ` K ) -> ( x =/= .0. \/ y =/= .0. ) ) <-> ( ( ( 1st ` p ) .+ y ) =/= ( 0g ` K ) -> ( ( 1st ` p ) =/= .0. \/ y =/= .0. ) ) ) ) |
| 243 |
|
oveq2 |
|- ( y = ( 2nd ` p ) -> ( ( 1st ` p ) .+ y ) = ( ( 1st ` p ) .+ ( 2nd ` p ) ) ) |
| 244 |
243
|
neeq1d |
|- ( y = ( 2nd ` p ) -> ( ( ( 1st ` p ) .+ y ) =/= ( 0g ` K ) <-> ( ( 1st ` p ) .+ ( 2nd ` p ) ) =/= ( 0g ` K ) ) ) |
| 245 |
|
neeq1 |
|- ( y = ( 2nd ` p ) -> ( y =/= .0. <-> ( 2nd ` p ) =/= .0. ) ) |
| 246 |
245
|
orbi2d |
|- ( y = ( 2nd ` p ) -> ( ( ( 1st ` p ) =/= .0. \/ y =/= .0. ) <-> ( ( 1st ` p ) =/= .0. \/ ( 2nd ` p ) =/= .0. ) ) ) |
| 247 |
244 246
|
imbi12d |
|- ( y = ( 2nd ` p ) -> ( ( ( ( 1st ` p ) .+ y ) =/= ( 0g ` K ) -> ( ( 1st ` p ) =/= .0. \/ y =/= .0. ) ) <-> ( ( ( 1st ` p ) .+ ( 2nd ` p ) ) =/= ( 0g ` K ) -> ( ( 1st ` p ) =/= .0. \/ ( 2nd ` p ) =/= .0. ) ) ) ) |
| 248 |
242 247
|
rspc2v |
|- ( ( ( 1st ` p ) e. B /\ ( 2nd ` p ) e. B ) -> ( A. x e. B A. y e. B ( ( x .+ y ) =/= ( 0g ` K ) -> ( x =/= .0. \/ y =/= .0. ) ) -> ( ( ( 1st ` p ) .+ ( 2nd ` p ) ) =/= ( 0g ` K ) -> ( ( 1st ` p ) =/= .0. \/ ( 2nd ` p ) =/= .0. ) ) ) ) |
| 249 |
236 237 248
|
syl2anc |
|- ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> ( A. x e. B A. y e. B ( ( x .+ y ) =/= ( 0g ` K ) -> ( x =/= .0. \/ y =/= .0. ) ) -> ( ( ( 1st ` p ) .+ ( 2nd ` p ) ) =/= ( 0g ` K ) -> ( ( 1st ` p ) =/= .0. \/ ( 2nd ` p ) =/= .0. ) ) ) ) |
| 250 |
215 234 249
|
mp2d |
|- ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> ( ( 1st ` p ) =/= .0. \/ ( 2nd ` p ) =/= .0. ) ) |
| 251 |
1 2 3 4 5 6 7 8 9 13 11 15
|
sibfinima |
|- ( ( ( ph /\ ( 1st ` p ) e. ran F /\ ( 2nd ` p ) e. ran G ) /\ ( ( 1st ` p ) =/= .0. \/ ( 2nd ` p ) =/= .0. ) ) -> ( M ` ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) e. ( 0 [,) +oo ) ) |
| 252 |
200 204 206 250 251
|
syl31anc |
|- ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> ( M ` ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) e. ( 0 [,) +oo ) ) |
| 253 |
199 252
|
esumpfinval |
|- ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) -> sum* p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( M ` ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) = sum_ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( M ` ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) ) |
| 254 |
172 196 253
|
3eqtrd |
|- ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) -> ( M ` ( `' ( F oF .+ G ) " { z } ) ) = sum_ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( M ` ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) ) |
| 255 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 256 |
255 252
|
sselid |
|- ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> ( M ` ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) e. RR ) |
| 257 |
199 256
|
fsumrecl |
|- ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) -> sum_ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( M ` ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) e. RR ) |
| 258 |
254 257
|
eqeltrd |
|- ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) -> ( M ` ( `' ( F oF .+ G ) " { z } ) ) e. RR ) |
| 259 |
175
|
adantr |
|- ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> M e. ( measures ` dom M ) ) |
| 260 |
176 109
|
sylanl2 |
|- ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) e. dom M ) |
| 261 |
|
measge0 |
|- ( ( M e. ( measures ` dom M ) /\ ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) e. dom M ) -> 0 <_ ( M ` ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) ) |
| 262 |
259 260 261
|
syl2anc |
|- ( ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) /\ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ) -> 0 <_ ( M ` ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) ) |
| 263 |
199 256 262
|
fsumge0 |
|- ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) -> 0 <_ sum_ p e. ( ( `' .+ " { z } ) i^i ( ran F X. ran G ) ) ( M ` ( ( `' F " { ( 1st ` p ) } ) i^i ( `' G " { ( 2nd ` p ) } ) ) ) ) |
| 264 |
263 254
|
breqtrrd |
|- ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) -> 0 <_ ( M ` ( `' ( F oF .+ G ) " { z } ) ) ) |
| 265 |
|
elrege0 |
|- ( ( M ` ( `' ( F oF .+ G ) " { z } ) ) e. ( 0 [,) +oo ) <-> ( ( M ` ( `' ( F oF .+ G ) " { z } ) ) e. RR /\ 0 <_ ( M ` ( `' ( F oF .+ G ) " { z } ) ) ) ) |
| 266 |
258 264 265
|
sylanbrc |
|- ( ( ph /\ z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ) -> ( M ` ( `' ( F oF .+ G ) " { z } ) ) e. ( 0 [,) +oo ) ) |
| 267 |
266
|
ralrimiva |
|- ( ph -> A. z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ( M ` ( `' ( F oF .+ G ) " { z } ) ) e. ( 0 [,) +oo ) ) |
| 268 |
|
eqid |
|- ( sigaGen ` ( TopOpen ` K ) ) = ( sigaGen ` ( TopOpen ` K ) ) |
| 269 |
|
eqid |
|- ( 0g ` K ) = ( 0g ` K ) |
| 270 |
|
eqid |
|- ( .s ` K ) = ( .s ` K ) |
| 271 |
|
eqid |
|- ( RRHom ` ( Scalar ` K ) ) = ( RRHom ` ( Scalar ` K ) ) |
| 272 |
10 30 268 269 270 271 14 8
|
issibf |
|- ( ph -> ( ( F oF .+ G ) e. dom ( K sitg M ) <-> ( ( F oF .+ G ) e. ( dom M MblFnM ( sigaGen ` ( TopOpen ` K ) ) ) /\ ran ( F oF .+ G ) e. Fin /\ A. z e. ( ran ( F oF .+ G ) \ { ( 0g ` K ) } ) ( M ` ( `' ( F oF .+ G ) " { z } ) ) e. ( 0 [,) +oo ) ) ) ) |
| 273 |
170 138 267 272
|
mpbir3and |
|- ( ph -> ( F oF .+ G ) e. dom ( K sitg M ) ) |