Step |
Hyp |
Ref |
Expression |
1 |
|
sitgval.b |
|- B = ( Base ` W ) |
2 |
|
sitgval.j |
|- J = ( TopOpen ` W ) |
3 |
|
sitgval.s |
|- S = ( sigaGen ` J ) |
4 |
|
sitgval.0 |
|- .0. = ( 0g ` W ) |
5 |
|
sitgval.x |
|- .x. = ( .s ` W ) |
6 |
|
sitgval.h |
|- H = ( RRHom ` ( Scalar ` W ) ) |
7 |
|
sitgval.1 |
|- ( ph -> W e. V ) |
8 |
|
sitgval.2 |
|- ( ph -> M e. U. ran measures ) |
9 |
|
sibfmbl.1 |
|- ( ph -> F e. dom ( W sitg M ) ) |
10 |
1 2 3 4 5 6 7 8
|
sitgval |
|- ( ph -> ( W sitg M ) = ( f e. { g e. ( dom M MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } |-> ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) ) ) ) |
11 |
|
simpr |
|- ( ( ph /\ f = F ) -> f = F ) |
12 |
11
|
rneqd |
|- ( ( ph /\ f = F ) -> ran f = ran F ) |
13 |
12
|
difeq1d |
|- ( ( ph /\ f = F ) -> ( ran f \ { .0. } ) = ( ran F \ { .0. } ) ) |
14 |
11
|
cnveqd |
|- ( ( ph /\ f = F ) -> `' f = `' F ) |
15 |
14
|
imaeq1d |
|- ( ( ph /\ f = F ) -> ( `' f " { x } ) = ( `' F " { x } ) ) |
16 |
15
|
fveq2d |
|- ( ( ph /\ f = F ) -> ( M ` ( `' f " { x } ) ) = ( M ` ( `' F " { x } ) ) ) |
17 |
16
|
fveq2d |
|- ( ( ph /\ f = F ) -> ( H ` ( M ` ( `' f " { x } ) ) ) = ( H ` ( M ` ( `' F " { x } ) ) ) ) |
18 |
17
|
oveq1d |
|- ( ( ph /\ f = F ) -> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) = ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) |
19 |
13 18
|
mpteq12dv |
|- ( ( ph /\ f = F ) -> ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) = ( x e. ( ran F \ { .0. } ) |-> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) ) |
20 |
19
|
oveq2d |
|- ( ( ph /\ f = F ) -> ( W gsum ( x e. ( ran f \ { .0. } ) |-> ( ( H ` ( M ` ( `' f " { x } ) ) ) .x. x ) ) ) = ( W gsum ( x e. ( ran F \ { .0. } ) |-> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) ) ) |
21 |
1 2 3 4 5 6 7 8 9
|
sibfmbl |
|- ( ph -> F e. ( dom M MblFnM S ) ) |
22 |
1 2 3 4 5 6 7 8 9
|
sibfrn |
|- ( ph -> ran F e. Fin ) |
23 |
1 2 3 4 5 6 7 8 9
|
sibfima |
|- ( ( ph /\ x e. ( ran F \ { .0. } ) ) -> ( M ` ( `' F " { x } ) ) e. ( 0 [,) +oo ) ) |
24 |
23
|
ralrimiva |
|- ( ph -> A. x e. ( ran F \ { .0. } ) ( M ` ( `' F " { x } ) ) e. ( 0 [,) +oo ) ) |
25 |
21 22 24
|
jca32 |
|- ( ph -> ( F e. ( dom M MblFnM S ) /\ ( ran F e. Fin /\ A. x e. ( ran F \ { .0. } ) ( M ` ( `' F " { x } ) ) e. ( 0 [,) +oo ) ) ) ) |
26 |
|
rneq |
|- ( g = F -> ran g = ran F ) |
27 |
26
|
eleq1d |
|- ( g = F -> ( ran g e. Fin <-> ran F e. Fin ) ) |
28 |
26
|
difeq1d |
|- ( g = F -> ( ran g \ { .0. } ) = ( ran F \ { .0. } ) ) |
29 |
|
cnveq |
|- ( g = F -> `' g = `' F ) |
30 |
29
|
imaeq1d |
|- ( g = F -> ( `' g " { x } ) = ( `' F " { x } ) ) |
31 |
30
|
fveq2d |
|- ( g = F -> ( M ` ( `' g " { x } ) ) = ( M ` ( `' F " { x } ) ) ) |
32 |
31
|
eleq1d |
|- ( g = F -> ( ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) <-> ( M ` ( `' F " { x } ) ) e. ( 0 [,) +oo ) ) ) |
33 |
28 32
|
raleqbidv |
|- ( g = F -> ( A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) <-> A. x e. ( ran F \ { .0. } ) ( M ` ( `' F " { x } ) ) e. ( 0 [,) +oo ) ) ) |
34 |
27 33
|
anbi12d |
|- ( g = F -> ( ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) <-> ( ran F e. Fin /\ A. x e. ( ran F \ { .0. } ) ( M ` ( `' F " { x } ) ) e. ( 0 [,) +oo ) ) ) ) |
35 |
34
|
elrab |
|- ( F e. { g e. ( dom M MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } <-> ( F e. ( dom M MblFnM S ) /\ ( ran F e. Fin /\ A. x e. ( ran F \ { .0. } ) ( M ` ( `' F " { x } ) ) e. ( 0 [,) +oo ) ) ) ) |
36 |
25 35
|
sylibr |
|- ( ph -> F e. { g e. ( dom M MblFnM S ) | ( ran g e. Fin /\ A. x e. ( ran g \ { .0. } ) ( M ` ( `' g " { x } ) ) e. ( 0 [,) +oo ) ) } ) |
37 |
|
ovexd |
|- ( ph -> ( W gsum ( x e. ( ran F \ { .0. } ) |-> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) ) e. _V ) |
38 |
10 20 36 37
|
fvmptd |
|- ( ph -> ( ( W sitg M ) ` F ) = ( W gsum ( x e. ( ran F \ { .0. } ) |-> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) ) ) |