Step |
Hyp |
Ref |
Expression |
1 |
|
sitgval.b |
|
2 |
|
sitgval.j |
|
3 |
|
sitgval.s |
|
4 |
|
sitgval.0 |
|
5 |
|
sitgval.x |
|
6 |
|
sitgval.h |
|
7 |
|
sitgval.1 |
|
8 |
|
sitgval.2 |
|
9 |
|
sibfmbl.1 |
|
10 |
1 2 3 4 5 6 7 8
|
sitgval |
|
11 |
|
simpr |
|
12 |
11
|
rneqd |
|
13 |
12
|
difeq1d |
|
14 |
11
|
cnveqd |
|
15 |
14
|
imaeq1d |
|
16 |
15
|
fveq2d |
|
17 |
16
|
fveq2d |
|
18 |
17
|
oveq1d |
|
19 |
13 18
|
mpteq12dv |
|
20 |
19
|
oveq2d |
|
21 |
1 2 3 4 5 6 7 8 9
|
sibfmbl |
|
22 |
1 2 3 4 5 6 7 8 9
|
sibfrn |
|
23 |
1 2 3 4 5 6 7 8 9
|
sibfima |
|
24 |
23
|
ralrimiva |
|
25 |
21 22 24
|
jca32 |
|
26 |
|
rneq |
|
27 |
26
|
eleq1d |
|
28 |
26
|
difeq1d |
|
29 |
|
cnveq |
|
30 |
29
|
imaeq1d |
|
31 |
30
|
fveq2d |
|
32 |
31
|
eleq1d |
|
33 |
28 32
|
raleqbidv |
|
34 |
27 33
|
anbi12d |
|
35 |
34
|
elrab |
|
36 |
25 35
|
sylibr |
|
37 |
|
ovexd |
|
38 |
10 20 36 37
|
fvmptd |
|