Metamath Proof Explorer


Theorem sitgfval

Description: Value of the Bochner integral for a simple function F . (Contributed by Thierry Arnoux, 30-Jan-2018)

Ref Expression
Hypotheses sitgval.b B = Base W
sitgval.j J = TopOpen W
sitgval.s S = 𝛔 J
sitgval.0 0 ˙ = 0 W
sitgval.x · ˙ = W
sitgval.h H = ℝHom Scalar W
sitgval.1 φ W V
sitgval.2 φ M ran measures
sibfmbl.1 φ F M W
Assertion sitgfval φ W F dM = W x ran F 0 ˙ H M F -1 x · ˙ x

Proof

Step Hyp Ref Expression
1 sitgval.b B = Base W
2 sitgval.j J = TopOpen W
3 sitgval.s S = 𝛔 J
4 sitgval.0 0 ˙ = 0 W
5 sitgval.x · ˙ = W
6 sitgval.h H = ℝHom Scalar W
7 sitgval.1 φ W V
8 sitgval.2 φ M ran measures
9 sibfmbl.1 φ F M W
10 1 2 3 4 5 6 7 8 sitgval φ W sitg M = f g dom M MblFn μ S | ran g Fin x ran g 0 ˙ M g -1 x 0 +∞ W x ran f 0 ˙ H M f -1 x · ˙ x
11 simpr φ f = F f = F
12 11 rneqd φ f = F ran f = ran F
13 12 difeq1d φ f = F ran f 0 ˙ = ran F 0 ˙
14 11 cnveqd φ f = F f -1 = F -1
15 14 imaeq1d φ f = F f -1 x = F -1 x
16 15 fveq2d φ f = F M f -1 x = M F -1 x
17 16 fveq2d φ f = F H M f -1 x = H M F -1 x
18 17 oveq1d φ f = F H M f -1 x · ˙ x = H M F -1 x · ˙ x
19 13 18 mpteq12dv φ f = F x ran f 0 ˙ H M f -1 x · ˙ x = x ran F 0 ˙ H M F -1 x · ˙ x
20 19 oveq2d φ f = F W x ran f 0 ˙ H M f -1 x · ˙ x = W x ran F 0 ˙ H M F -1 x · ˙ x
21 1 2 3 4 5 6 7 8 9 sibfmbl φ F dom M MblFn μ S
22 1 2 3 4 5 6 7 8 9 sibfrn φ ran F Fin
23 1 2 3 4 5 6 7 8 9 sibfima φ x ran F 0 ˙ M F -1 x 0 +∞
24 23 ralrimiva φ x ran F 0 ˙ M F -1 x 0 +∞
25 21 22 24 jca32 φ F dom M MblFn μ S ran F Fin x ran F 0 ˙ M F -1 x 0 +∞
26 rneq g = F ran g = ran F
27 26 eleq1d g = F ran g Fin ran F Fin
28 26 difeq1d g = F ran g 0 ˙ = ran F 0 ˙
29 cnveq g = F g -1 = F -1
30 29 imaeq1d g = F g -1 x = F -1 x
31 30 fveq2d g = F M g -1 x = M F -1 x
32 31 eleq1d g = F M g -1 x 0 +∞ M F -1 x 0 +∞
33 28 32 raleqbidv g = F x ran g 0 ˙ M g -1 x 0 +∞ x ran F 0 ˙ M F -1 x 0 +∞
34 27 33 anbi12d g = F ran g Fin x ran g 0 ˙ M g -1 x 0 +∞ ran F Fin x ran F 0 ˙ M F -1 x 0 +∞
35 34 elrab F g dom M MblFn μ S | ran g Fin x ran g 0 ˙ M g -1 x 0 +∞ F dom M MblFn μ S ran F Fin x ran F 0 ˙ M F -1 x 0 +∞
36 25 35 sylibr φ F g dom M MblFn μ S | ran g Fin x ran g 0 ˙ M g -1 x 0 +∞
37 ovexd φ W x ran F 0 ˙ H M F -1 x · ˙ x V
38 10 20 36 37 fvmptd φ W F dM = W x ran F 0 ˙ H M F -1 x · ˙ x