| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sitgval.b |
|
| 2 |
|
sitgval.j |
|
| 3 |
|
sitgval.s |
|
| 4 |
|
sitgval.0 |
|
| 5 |
|
sitgval.x |
|
| 6 |
|
sitgval.h |
|
| 7 |
|
sitgval.1 |
|
| 8 |
|
sitgval.2 |
|
| 9 |
|
sibfmbl.1 |
|
| 10 |
1 2 3 4 5 6 7 8
|
sitgval |
|
| 11 |
|
simpr |
|
| 12 |
11
|
rneqd |
|
| 13 |
12
|
difeq1d |
|
| 14 |
11
|
cnveqd |
|
| 15 |
14
|
imaeq1d |
|
| 16 |
15
|
fveq2d |
|
| 17 |
16
|
fveq2d |
|
| 18 |
17
|
oveq1d |
|
| 19 |
13 18
|
mpteq12dv |
|
| 20 |
19
|
oveq2d |
|
| 21 |
1 2 3 4 5 6 7 8 9
|
sibfmbl |
|
| 22 |
1 2 3 4 5 6 7 8 9
|
sibfrn |
|
| 23 |
1 2 3 4 5 6 7 8 9
|
sibfima |
|
| 24 |
23
|
ralrimiva |
|
| 25 |
21 22 24
|
jca32 |
|
| 26 |
|
rneq |
|
| 27 |
26
|
eleq1d |
|
| 28 |
26
|
difeq1d |
|
| 29 |
|
cnveq |
|
| 30 |
29
|
imaeq1d |
|
| 31 |
30
|
fveq2d |
|
| 32 |
31
|
eleq1d |
|
| 33 |
28 32
|
raleqbidv |
|
| 34 |
27 33
|
anbi12d |
|
| 35 |
34
|
elrab |
|
| 36 |
25 35
|
sylibr |
|
| 37 |
|
ovexd |
|
| 38 |
10 20 36 37
|
fvmptd |
|