Step |
Hyp |
Ref |
Expression |
1 |
|
sitgval.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
sitgval.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) |
3 |
|
sitgval.s |
⊢ 𝑆 = ( sigaGen ‘ 𝐽 ) |
4 |
|
sitgval.0 |
⊢ 0 = ( 0g ‘ 𝑊 ) |
5 |
|
sitgval.x |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
6 |
|
sitgval.h |
⊢ 𝐻 = ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) |
7 |
|
sitgval.1 |
⊢ ( 𝜑 → 𝑊 ∈ 𝑉 ) |
8 |
|
sitgval.2 |
⊢ ( 𝜑 → 𝑀 ∈ ∪ ran measures ) |
9 |
|
sibfmbl.1 |
⊢ ( 𝜑 → 𝐹 ∈ dom ( 𝑊 sitg 𝑀 ) ) |
10 |
1 2 3 4 5 6 7 8
|
sitgval |
⊢ ( 𝜑 → ( 𝑊 sitg 𝑀 ) = ( 𝑓 ∈ { 𝑔 ∈ ( dom 𝑀 MblFnM 𝑆 ) ∣ ( ran 𝑔 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝑔 ∖ { 0 } ) ( 𝑀 ‘ ( ◡ 𝑔 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) } ↦ ( 𝑊 Σg ( 𝑥 ∈ ( ran 𝑓 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝑓 “ { 𝑥 } ) ) ) · 𝑥 ) ) ) ) ) |
11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑓 = 𝐹 ) → 𝑓 = 𝐹 ) |
12 |
11
|
rneqd |
⊢ ( ( 𝜑 ∧ 𝑓 = 𝐹 ) → ran 𝑓 = ran 𝐹 ) |
13 |
12
|
difeq1d |
⊢ ( ( 𝜑 ∧ 𝑓 = 𝐹 ) → ( ran 𝑓 ∖ { 0 } ) = ( ran 𝐹 ∖ { 0 } ) ) |
14 |
11
|
cnveqd |
⊢ ( ( 𝜑 ∧ 𝑓 = 𝐹 ) → ◡ 𝑓 = ◡ 𝐹 ) |
15 |
14
|
imaeq1d |
⊢ ( ( 𝜑 ∧ 𝑓 = 𝐹 ) → ( ◡ 𝑓 “ { 𝑥 } ) = ( ◡ 𝐹 “ { 𝑥 } ) ) |
16 |
15
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑓 = 𝐹 ) → ( 𝑀 ‘ ( ◡ 𝑓 “ { 𝑥 } ) ) = ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) |
17 |
16
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑓 = 𝐹 ) → ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝑓 “ { 𝑥 } ) ) ) = ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ) |
18 |
17
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑓 = 𝐹 ) → ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝑓 “ { 𝑥 } ) ) ) · 𝑥 ) = ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) |
19 |
13 18
|
mpteq12dv |
⊢ ( ( 𝜑 ∧ 𝑓 = 𝐹 ) → ( 𝑥 ∈ ( ran 𝑓 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝑓 “ { 𝑥 } ) ) ) · 𝑥 ) ) = ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) ) |
20 |
19
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑓 = 𝐹 ) → ( 𝑊 Σg ( 𝑥 ∈ ( ran 𝑓 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝑓 “ { 𝑥 } ) ) ) · 𝑥 ) ) ) = ( 𝑊 Σg ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) ) ) |
21 |
1 2 3 4 5 6 7 8 9
|
sibfmbl |
⊢ ( 𝜑 → 𝐹 ∈ ( dom 𝑀 MblFnM 𝑆 ) ) |
22 |
1 2 3 4 5 6 7 8 9
|
sibfrn |
⊢ ( 𝜑 → ran 𝐹 ∈ Fin ) |
23 |
1 2 3 4 5 6 7 8 9
|
sibfima |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) |
24 |
23
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) |
25 |
21 22 24
|
jca32 |
⊢ ( 𝜑 → ( 𝐹 ∈ ( dom 𝑀 MblFnM 𝑆 ) ∧ ( ran 𝐹 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) ) ) |
26 |
|
rneq |
⊢ ( 𝑔 = 𝐹 → ran 𝑔 = ran 𝐹 ) |
27 |
26
|
eleq1d |
⊢ ( 𝑔 = 𝐹 → ( ran 𝑔 ∈ Fin ↔ ran 𝐹 ∈ Fin ) ) |
28 |
26
|
difeq1d |
⊢ ( 𝑔 = 𝐹 → ( ran 𝑔 ∖ { 0 } ) = ( ran 𝐹 ∖ { 0 } ) ) |
29 |
|
cnveq |
⊢ ( 𝑔 = 𝐹 → ◡ 𝑔 = ◡ 𝐹 ) |
30 |
29
|
imaeq1d |
⊢ ( 𝑔 = 𝐹 → ( ◡ 𝑔 “ { 𝑥 } ) = ( ◡ 𝐹 “ { 𝑥 } ) ) |
31 |
30
|
fveq2d |
⊢ ( 𝑔 = 𝐹 → ( 𝑀 ‘ ( ◡ 𝑔 “ { 𝑥 } ) ) = ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) |
32 |
31
|
eleq1d |
⊢ ( 𝑔 = 𝐹 → ( ( 𝑀 ‘ ( ◡ 𝑔 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ↔ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) ) |
33 |
28 32
|
raleqbidv |
⊢ ( 𝑔 = 𝐹 → ( ∀ 𝑥 ∈ ( ran 𝑔 ∖ { 0 } ) ( 𝑀 ‘ ( ◡ 𝑔 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ↔ ∀ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) ) |
34 |
27 33
|
anbi12d |
⊢ ( 𝑔 = 𝐹 → ( ( ran 𝑔 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝑔 ∖ { 0 } ) ( 𝑀 ‘ ( ◡ 𝑔 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) ↔ ( ran 𝐹 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) ) ) |
35 |
34
|
elrab |
⊢ ( 𝐹 ∈ { 𝑔 ∈ ( dom 𝑀 MblFnM 𝑆 ) ∣ ( ran 𝑔 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝑔 ∖ { 0 } ) ( 𝑀 ‘ ( ◡ 𝑔 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) } ↔ ( 𝐹 ∈ ( dom 𝑀 MblFnM 𝑆 ) ∧ ( ran 𝐹 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) ) ) |
36 |
25 35
|
sylibr |
⊢ ( 𝜑 → 𝐹 ∈ { 𝑔 ∈ ( dom 𝑀 MblFnM 𝑆 ) ∣ ( ran 𝑔 ∈ Fin ∧ ∀ 𝑥 ∈ ( ran 𝑔 ∖ { 0 } ) ( 𝑀 ‘ ( ◡ 𝑔 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) } ) |
37 |
|
ovexd |
⊢ ( 𝜑 → ( 𝑊 Σg ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) ) ∈ V ) |
38 |
10 20 36 37
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝑊 sitg 𝑀 ) ‘ 𝐹 ) = ( 𝑊 Σg ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) ) ) |