Metamath Proof Explorer


Theorem sitgclg

Description: Closure of the Bochner integral on simple functions, generic version. See sitgclbn for the version for Banach spaces. (Contributed by Thierry Arnoux, 24-Feb-2018) (Proof shortened by AV, 12-Dec-2019)

Ref Expression
Hypotheses sitgval.b 𝐵 = ( Base ‘ 𝑊 )
sitgval.j 𝐽 = ( TopOpen ‘ 𝑊 )
sitgval.s 𝑆 = ( sigaGen ‘ 𝐽 )
sitgval.0 0 = ( 0g𝑊 )
sitgval.x · = ( ·𝑠𝑊 )
sitgval.h 𝐻 = ( ℝHom ‘ ( Scalar ‘ 𝑊 ) )
sitgval.1 ( 𝜑𝑊𝑉 )
sitgval.2 ( 𝜑𝑀 ran measures )
sibfmbl.1 ( 𝜑𝐹 ∈ dom ( 𝑊 sitg 𝑀 ) )
sitgclg.g 𝐺 = ( Scalar ‘ 𝑊 )
sitgclg.d 𝐷 = ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) )
sitgclg.1 ( 𝜑𝑊 ∈ TopSp )
sitgclg.2 ( 𝜑𝑊 ∈ CMnd )
sitgclg.3 ( 𝜑 → ( Scalar ‘ 𝑊 ) ∈ ℝExt )
sitgclg.4 ( ( 𝜑𝑚 ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ∧ 𝑥𝐵 ) → ( 𝑚 · 𝑥 ) ∈ 𝐵 )
Assertion sitgclg ( 𝜑 → ( ( 𝑊 sitg 𝑀 ) ‘ 𝐹 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 sitgval.b 𝐵 = ( Base ‘ 𝑊 )
2 sitgval.j 𝐽 = ( TopOpen ‘ 𝑊 )
3 sitgval.s 𝑆 = ( sigaGen ‘ 𝐽 )
4 sitgval.0 0 = ( 0g𝑊 )
5 sitgval.x · = ( ·𝑠𝑊 )
6 sitgval.h 𝐻 = ( ℝHom ‘ ( Scalar ‘ 𝑊 ) )
7 sitgval.1 ( 𝜑𝑊𝑉 )
8 sitgval.2 ( 𝜑𝑀 ran measures )
9 sibfmbl.1 ( 𝜑𝐹 ∈ dom ( 𝑊 sitg 𝑀 ) )
10 sitgclg.g 𝐺 = ( Scalar ‘ 𝑊 )
11 sitgclg.d 𝐷 = ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) )
12 sitgclg.1 ( 𝜑𝑊 ∈ TopSp )
13 sitgclg.2 ( 𝜑𝑊 ∈ CMnd )
14 sitgclg.3 ( 𝜑 → ( Scalar ‘ 𝑊 ) ∈ ℝExt )
15 sitgclg.4 ( ( 𝜑𝑚 ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ∧ 𝑥𝐵 ) → ( 𝑚 · 𝑥 ) ∈ 𝐵 )
16 1 2 3 4 5 6 7 8 9 sitgfval ( 𝜑 → ( ( 𝑊 sitg 𝑀 ) ‘ 𝐹 ) = ( 𝑊 Σg ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) ) )
17 rnexg ( 𝐹 ∈ dom ( 𝑊 sitg 𝑀 ) → ran 𝐹 ∈ V )
18 difexg ( ran 𝐹 ∈ V → ( ran 𝐹 ∖ { 0 } ) ∈ V )
19 9 17 18 3syl ( 𝜑 → ( ran 𝐹 ∖ { 0 } ) ∈ V )
20 simpl ( ( 𝜑𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝜑 )
21 1 2 3 4 5 6 7 8 9 sibfima ( ( 𝜑𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) )
22 10 fveq2i ( dist ‘ 𝐺 ) = ( dist ‘ ( Scalar ‘ 𝑊 ) )
23 10 fveq2i ( Base ‘ 𝐺 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
24 23 23 xpeq12i ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) = ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) × ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
25 22 24 reseq12i ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) = ( ( dist ‘ ( Scalar ‘ 𝑊 ) ) ↾ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) × ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) )
26 11 25 eqtri 𝐷 = ( ( dist ‘ ( Scalar ‘ 𝑊 ) ) ↾ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) × ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) )
27 eqid ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) )
28 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
29 10 fveq2i ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ ( Scalar ‘ 𝑊 ) )
30 10 fveq2i ( ℤMod ‘ 𝐺 ) = ( ℤMod ‘ ( Scalar ‘ 𝑊 ) )
31 10 14 eqeltrid ( 𝜑𝐺 ∈ ℝExt )
32 rrextdrg ( 𝐺 ∈ ℝExt → 𝐺 ∈ DivRing )
33 31 32 syl ( 𝜑𝐺 ∈ DivRing )
34 10 33 eqeltrrid ( 𝜑 → ( Scalar ‘ 𝑊 ) ∈ DivRing )
35 rrextnrg ( 𝐺 ∈ ℝExt → 𝐺 ∈ NrmRing )
36 31 35 syl ( 𝜑𝐺 ∈ NrmRing )
37 10 36 eqeltrrid ( 𝜑 → ( Scalar ‘ 𝑊 ) ∈ NrmRing )
38 eqid ( ℤMod ‘ 𝐺 ) = ( ℤMod ‘ 𝐺 )
39 38 rrextnlm ( 𝐺 ∈ ℝExt → ( ℤMod ‘ 𝐺 ) ∈ NrmMod )
40 31 39 syl ( 𝜑 → ( ℤMod ‘ 𝐺 ) ∈ NrmMod )
41 10 fveq2i ( chr ‘ 𝐺 ) = ( chr ‘ ( Scalar ‘ 𝑊 ) )
42 rrextchr ( 𝐺 ∈ ℝExt → ( chr ‘ 𝐺 ) = 0 )
43 31 42 syl ( 𝜑 → ( chr ‘ 𝐺 ) = 0 )
44 41 43 eqtr3id ( 𝜑 → ( chr ‘ ( Scalar ‘ 𝑊 ) ) = 0 )
45 rrextcusp ( 𝐺 ∈ ℝExt → 𝐺 ∈ CUnifSp )
46 31 45 syl ( 𝜑𝐺 ∈ CUnifSp )
47 10 46 eqeltrrid ( 𝜑 → ( Scalar ‘ 𝑊 ) ∈ CUnifSp )
48 10 fveq2i ( UnifSt ‘ 𝐺 ) = ( UnifSt ‘ ( Scalar ‘ 𝑊 ) )
49 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
50 49 11 rrextust ( 𝐺 ∈ ℝExt → ( UnifSt ‘ 𝐺 ) = ( metUnif ‘ 𝐷 ) )
51 31 50 syl ( 𝜑 → ( UnifSt ‘ 𝐺 ) = ( metUnif ‘ 𝐷 ) )
52 48 51 eqtr3id ( 𝜑 → ( UnifSt ‘ ( Scalar ‘ 𝑊 ) ) = ( metUnif ‘ 𝐷 ) )
53 26 27 28 29 30 34 37 40 44 47 52 rrhf ( 𝜑 → ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) : ℝ ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
54 6 feq1i ( 𝐻 : ℝ ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) : ℝ ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
55 53 54 sylibr ( 𝜑𝐻 : ℝ ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
56 55 ffund ( 𝜑 → Fun 𝐻 )
57 rge0ssre ( 0 [,) +∞ ) ⊆ ℝ
58 55 fdmd ( 𝜑 → dom 𝐻 = ℝ )
59 57 58 sseqtrrid ( 𝜑 → ( 0 [,) +∞ ) ⊆ dom 𝐻 )
60 funfvima2 ( ( Fun 𝐻 ∧ ( 0 [,) +∞ ) ⊆ dom 𝐻 ) → ( ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) → ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ) )
61 56 59 60 syl2anc ( 𝜑 → ( ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) → ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ) )
62 20 21 61 sylc ( ( 𝜑𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) )
63 dmmeas ( 𝑀 ran measures → dom 𝑀 ran sigAlgebra )
64 8 63 syl ( 𝜑 → dom 𝑀 ran sigAlgebra )
65 2 fvexi 𝐽 ∈ V
66 65 a1i ( 𝜑𝐽 ∈ V )
67 66 sgsiga ( 𝜑 → ( sigaGen ‘ 𝐽 ) ∈ ran sigAlgebra )
68 3 67 eqeltrid ( 𝜑𝑆 ran sigAlgebra )
69 1 2 3 4 5 6 7 8 9 sibfmbl ( 𝜑𝐹 ∈ ( dom 𝑀 MblFnM 𝑆 ) )
70 64 68 69 mbfmf ( 𝜑𝐹 : dom 𝑀 𝑆 )
71 70 frnd ( 𝜑 → ran 𝐹 𝑆 )
72 3 unieqi 𝑆 = ( sigaGen ‘ 𝐽 )
73 unisg ( 𝐽 ∈ V → ( sigaGen ‘ 𝐽 ) = 𝐽 )
74 65 73 mp1i ( 𝜑 ( sigaGen ‘ 𝐽 ) = 𝐽 )
75 72 74 eqtrid ( 𝜑 𝑆 = 𝐽 )
76 1 2 tpsuni ( 𝑊 ∈ TopSp → 𝐵 = 𝐽 )
77 12 76 syl ( 𝜑𝐵 = 𝐽 )
78 75 77 eqtr4d ( 𝜑 𝑆 = 𝐵 )
79 71 78 sseqtrd ( 𝜑 → ran 𝐹𝐵 )
80 79 ssdifd ( 𝜑 → ( ran 𝐹 ∖ { 0 } ) ⊆ ( 𝐵 ∖ { 0 } ) )
81 80 sselda ( ( 𝜑𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝑥 ∈ ( 𝐵 ∖ { 0 } ) )
82 81 eldifad ( ( 𝜑𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝑥𝐵 )
83 simp2 ( ( 𝜑 ∧ ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ∧ 𝑥𝐵 ) → ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) )
84 eleq1 ( 𝑚 = ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) → ( 𝑚 ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ↔ ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ) )
85 84 3anbi2d ( 𝑚 = ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) → ( ( 𝜑𝑚 ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ∧ 𝑥𝐵 ) ↔ ( 𝜑 ∧ ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ∧ 𝑥𝐵 ) ) )
86 oveq1 ( 𝑚 = ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) → ( 𝑚 · 𝑥 ) = ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) )
87 86 eleq1d ( 𝑚 = ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) → ( ( 𝑚 · 𝑥 ) ∈ 𝐵 ↔ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ∈ 𝐵 ) )
88 85 87 imbi12d ( 𝑚 = ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) → ( ( ( 𝜑𝑚 ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ∧ 𝑥𝐵 ) → ( 𝑚 · 𝑥 ) ∈ 𝐵 ) ↔ ( ( 𝜑 ∧ ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ∧ 𝑥𝐵 ) → ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ∈ 𝐵 ) ) )
89 88 15 vtoclg ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) → ( ( 𝜑 ∧ ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ∧ 𝑥𝐵 ) → ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ∈ 𝐵 ) )
90 83 89 mpcom ( ( 𝜑 ∧ ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ∧ 𝑥𝐵 ) → ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ∈ 𝐵 )
91 20 62 82 90 syl3anc ( ( 𝜑𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ∈ 𝐵 )
92 91 fmpttd ( 𝜑 → ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) : ( ran 𝐹 ∖ { 0 } ) ⟶ 𝐵 )
93 mptexg ( ( ran 𝐹 ∖ { 0 } ) ∈ V → ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) ∈ V )
94 19 93 syl ( 𝜑 → ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) ∈ V )
95 4 fvexi 0 ∈ V
96 suppimacnv ( ( ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) ∈ V ∧ 0 ∈ V ) → ( ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) supp 0 ) = ( ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) “ ( V ∖ { 0 } ) ) )
97 94 95 96 sylancl ( 𝜑 → ( ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) supp 0 ) = ( ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) “ ( V ∖ { 0 } ) ) )
98 1 2 3 4 5 6 7 8 9 sibfrn ( 𝜑 → ran 𝐹 ∈ Fin )
99 cnvimass ( ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) “ ( V ∖ { 0 } ) ) ⊆ dom ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) )
100 eqid ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) = ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) )
101 100 dmmptss dom ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) ⊆ ( ran 𝐹 ∖ { 0 } )
102 99 101 sstri ( ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) “ ( V ∖ { 0 } ) ) ⊆ ( ran 𝐹 ∖ { 0 } )
103 difss ( ran 𝐹 ∖ { 0 } ) ⊆ ran 𝐹
104 102 103 sstri ( ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) “ ( V ∖ { 0 } ) ) ⊆ ran 𝐹
105 ssfi ( ( ran 𝐹 ∈ Fin ∧ ( ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) “ ( V ∖ { 0 } ) ) ⊆ ran 𝐹 ) → ( ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) “ ( V ∖ { 0 } ) ) ∈ Fin )
106 98 104 105 sylancl ( 𝜑 → ( ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) “ ( V ∖ { 0 } ) ) ∈ Fin )
107 97 106 eqeltrd ( 𝜑 → ( ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) supp 0 ) ∈ Fin )
108 1 4 13 19 92 107 gsumcl2 ( 𝜑 → ( 𝑊 Σg ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) ) ∈ 𝐵 )
109 16 108 eqeltrd ( 𝜑 → ( ( 𝑊 sitg 𝑀 ) ‘ 𝐹 ) ∈ 𝐵 )