Step |
Hyp |
Ref |
Expression |
1 |
|
sitgval.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
sitgval.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) |
3 |
|
sitgval.s |
⊢ 𝑆 = ( sigaGen ‘ 𝐽 ) |
4 |
|
sitgval.0 |
⊢ 0 = ( 0g ‘ 𝑊 ) |
5 |
|
sitgval.x |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
6 |
|
sitgval.h |
⊢ 𝐻 = ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) |
7 |
|
sitgval.1 |
⊢ ( 𝜑 → 𝑊 ∈ 𝑉 ) |
8 |
|
sitgval.2 |
⊢ ( 𝜑 → 𝑀 ∈ ∪ ran measures ) |
9 |
|
sibfmbl.1 |
⊢ ( 𝜑 → 𝐹 ∈ dom ( 𝑊 sitg 𝑀 ) ) |
10 |
|
sitgclg.g |
⊢ 𝐺 = ( Scalar ‘ 𝑊 ) |
11 |
|
sitgclg.d |
⊢ 𝐷 = ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) |
12 |
|
sitgclg.1 |
⊢ ( 𝜑 → 𝑊 ∈ TopSp ) |
13 |
|
sitgclg.2 |
⊢ ( 𝜑 → 𝑊 ∈ CMnd ) |
14 |
|
sitgclg.3 |
⊢ ( 𝜑 → ( Scalar ‘ 𝑊 ) ∈ ℝExt ) |
15 |
|
sitgclg.4 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑚 · 𝑥 ) ∈ 𝐵 ) |
16 |
1 2 3 4 5 6 7 8 9
|
sitgfval |
⊢ ( 𝜑 → ( ( 𝑊 sitg 𝑀 ) ‘ 𝐹 ) = ( 𝑊 Σg ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) ) ) |
17 |
|
rnexg |
⊢ ( 𝐹 ∈ dom ( 𝑊 sitg 𝑀 ) → ran 𝐹 ∈ V ) |
18 |
|
difexg |
⊢ ( ran 𝐹 ∈ V → ( ran 𝐹 ∖ { 0 } ) ∈ V ) |
19 |
9 17 18
|
3syl |
⊢ ( 𝜑 → ( ran 𝐹 ∖ { 0 } ) ∈ V ) |
20 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝜑 ) |
21 |
1 2 3 4 5 6 7 8 9
|
sibfima |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) ) |
22 |
10
|
fveq2i |
⊢ ( dist ‘ 𝐺 ) = ( dist ‘ ( Scalar ‘ 𝑊 ) ) |
23 |
10
|
fveq2i |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
24 |
23 23
|
xpeq12i |
⊢ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) = ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) × ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
25 |
22 24
|
reseq12i |
⊢ ( ( dist ‘ 𝐺 ) ↾ ( ( Base ‘ 𝐺 ) × ( Base ‘ 𝐺 ) ) ) = ( ( dist ‘ ( Scalar ‘ 𝑊 ) ) ↾ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) × ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
26 |
11 25
|
eqtri |
⊢ 𝐷 = ( ( dist ‘ ( Scalar ‘ 𝑊 ) ) ↾ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) × ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
27 |
|
eqid |
⊢ ( topGen ‘ ran (,) ) = ( topGen ‘ ran (,) ) |
28 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
29 |
10
|
fveq2i |
⊢ ( TopOpen ‘ 𝐺 ) = ( TopOpen ‘ ( Scalar ‘ 𝑊 ) ) |
30 |
10
|
fveq2i |
⊢ ( ℤMod ‘ 𝐺 ) = ( ℤMod ‘ ( Scalar ‘ 𝑊 ) ) |
31 |
10 14
|
eqeltrid |
⊢ ( 𝜑 → 𝐺 ∈ ℝExt ) |
32 |
|
rrextdrg |
⊢ ( 𝐺 ∈ ℝExt → 𝐺 ∈ DivRing ) |
33 |
31 32
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ DivRing ) |
34 |
10 33
|
eqeltrrid |
⊢ ( 𝜑 → ( Scalar ‘ 𝑊 ) ∈ DivRing ) |
35 |
|
rrextnrg |
⊢ ( 𝐺 ∈ ℝExt → 𝐺 ∈ NrmRing ) |
36 |
31 35
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ NrmRing ) |
37 |
10 36
|
eqeltrrid |
⊢ ( 𝜑 → ( Scalar ‘ 𝑊 ) ∈ NrmRing ) |
38 |
|
eqid |
⊢ ( ℤMod ‘ 𝐺 ) = ( ℤMod ‘ 𝐺 ) |
39 |
38
|
rrextnlm |
⊢ ( 𝐺 ∈ ℝExt → ( ℤMod ‘ 𝐺 ) ∈ NrmMod ) |
40 |
31 39
|
syl |
⊢ ( 𝜑 → ( ℤMod ‘ 𝐺 ) ∈ NrmMod ) |
41 |
10
|
fveq2i |
⊢ ( chr ‘ 𝐺 ) = ( chr ‘ ( Scalar ‘ 𝑊 ) ) |
42 |
|
rrextchr |
⊢ ( 𝐺 ∈ ℝExt → ( chr ‘ 𝐺 ) = 0 ) |
43 |
31 42
|
syl |
⊢ ( 𝜑 → ( chr ‘ 𝐺 ) = 0 ) |
44 |
41 43
|
eqtr3id |
⊢ ( 𝜑 → ( chr ‘ ( Scalar ‘ 𝑊 ) ) = 0 ) |
45 |
|
rrextcusp |
⊢ ( 𝐺 ∈ ℝExt → 𝐺 ∈ CUnifSp ) |
46 |
31 45
|
syl |
⊢ ( 𝜑 → 𝐺 ∈ CUnifSp ) |
47 |
10 46
|
eqeltrrid |
⊢ ( 𝜑 → ( Scalar ‘ 𝑊 ) ∈ CUnifSp ) |
48 |
10
|
fveq2i |
⊢ ( UnifSt ‘ 𝐺 ) = ( UnifSt ‘ ( Scalar ‘ 𝑊 ) ) |
49 |
|
eqid |
⊢ ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 ) |
50 |
49 11
|
rrextust |
⊢ ( 𝐺 ∈ ℝExt → ( UnifSt ‘ 𝐺 ) = ( metUnif ‘ 𝐷 ) ) |
51 |
31 50
|
syl |
⊢ ( 𝜑 → ( UnifSt ‘ 𝐺 ) = ( metUnif ‘ 𝐷 ) ) |
52 |
48 51
|
eqtr3id |
⊢ ( 𝜑 → ( UnifSt ‘ ( Scalar ‘ 𝑊 ) ) = ( metUnif ‘ 𝐷 ) ) |
53 |
26 27 28 29 30 34 37 40 44 47 52
|
rrhf |
⊢ ( 𝜑 → ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) : ℝ ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
54 |
6
|
feq1i |
⊢ ( 𝐻 : ℝ ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ↔ ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) : ℝ ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
55 |
53 54
|
sylibr |
⊢ ( 𝜑 → 𝐻 : ℝ ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
56 |
55
|
ffund |
⊢ ( 𝜑 → Fun 𝐻 ) |
57 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
58 |
55
|
fdmd |
⊢ ( 𝜑 → dom 𝐻 = ℝ ) |
59 |
57 58
|
sseqtrrid |
⊢ ( 𝜑 → ( 0 [,) +∞ ) ⊆ dom 𝐻 ) |
60 |
|
funfvima2 |
⊢ ( ( Fun 𝐻 ∧ ( 0 [,) +∞ ) ⊆ dom 𝐻 ) → ( ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) → ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ) ) |
61 |
56 59 60
|
syl2anc |
⊢ ( 𝜑 → ( ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ∈ ( 0 [,) +∞ ) → ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ) ) |
62 |
20 21 61
|
sylc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ) |
63 |
|
dmmeas |
⊢ ( 𝑀 ∈ ∪ ran measures → dom 𝑀 ∈ ∪ ran sigAlgebra ) |
64 |
8 63
|
syl |
⊢ ( 𝜑 → dom 𝑀 ∈ ∪ ran sigAlgebra ) |
65 |
2
|
fvexi |
⊢ 𝐽 ∈ V |
66 |
65
|
a1i |
⊢ ( 𝜑 → 𝐽 ∈ V ) |
67 |
66
|
sgsiga |
⊢ ( 𝜑 → ( sigaGen ‘ 𝐽 ) ∈ ∪ ran sigAlgebra ) |
68 |
3 67
|
eqeltrid |
⊢ ( 𝜑 → 𝑆 ∈ ∪ ran sigAlgebra ) |
69 |
1 2 3 4 5 6 7 8 9
|
sibfmbl |
⊢ ( 𝜑 → 𝐹 ∈ ( dom 𝑀 MblFnM 𝑆 ) ) |
70 |
64 68 69
|
mbfmf |
⊢ ( 𝜑 → 𝐹 : ∪ dom 𝑀 ⟶ ∪ 𝑆 ) |
71 |
70
|
frnd |
⊢ ( 𝜑 → ran 𝐹 ⊆ ∪ 𝑆 ) |
72 |
3
|
unieqi |
⊢ ∪ 𝑆 = ∪ ( sigaGen ‘ 𝐽 ) |
73 |
|
unisg |
⊢ ( 𝐽 ∈ V → ∪ ( sigaGen ‘ 𝐽 ) = ∪ 𝐽 ) |
74 |
65 73
|
mp1i |
⊢ ( 𝜑 → ∪ ( sigaGen ‘ 𝐽 ) = ∪ 𝐽 ) |
75 |
72 74
|
eqtrid |
⊢ ( 𝜑 → ∪ 𝑆 = ∪ 𝐽 ) |
76 |
1 2
|
tpsuni |
⊢ ( 𝑊 ∈ TopSp → 𝐵 = ∪ 𝐽 ) |
77 |
12 76
|
syl |
⊢ ( 𝜑 → 𝐵 = ∪ 𝐽 ) |
78 |
75 77
|
eqtr4d |
⊢ ( 𝜑 → ∪ 𝑆 = 𝐵 ) |
79 |
71 78
|
sseqtrd |
⊢ ( 𝜑 → ran 𝐹 ⊆ 𝐵 ) |
80 |
79
|
ssdifd |
⊢ ( 𝜑 → ( ran 𝐹 ∖ { 0 } ) ⊆ ( 𝐵 ∖ { 0 } ) ) |
81 |
80
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝑥 ∈ ( 𝐵 ∖ { 0 } ) ) |
82 |
81
|
eldifad |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → 𝑥 ∈ 𝐵 ) |
83 |
|
simp2 |
⊢ ( ( 𝜑 ∧ ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ) |
84 |
|
eleq1 |
⊢ ( 𝑚 = ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) → ( 𝑚 ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ↔ ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ) ) |
85 |
84
|
3anbi2d |
⊢ ( 𝑚 = ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) → ( ( 𝜑 ∧ 𝑚 ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ 𝐵 ) ↔ ( 𝜑 ∧ ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ 𝐵 ) ) ) |
86 |
|
oveq1 |
⊢ ( 𝑚 = ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) → ( 𝑚 · 𝑥 ) = ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) |
87 |
86
|
eleq1d |
⊢ ( 𝑚 = ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) → ( ( 𝑚 · 𝑥 ) ∈ 𝐵 ↔ ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ∈ 𝐵 ) ) |
88 |
85 87
|
imbi12d |
⊢ ( 𝑚 = ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) → ( ( ( 𝜑 ∧ 𝑚 ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑚 · 𝑥 ) ∈ 𝐵 ) ↔ ( ( 𝜑 ∧ ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ∈ 𝐵 ) ) ) |
89 |
88 15
|
vtoclg |
⊢ ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) → ( ( 𝜑 ∧ ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ∈ 𝐵 ) ) |
90 |
83 89
|
mpcom |
⊢ ( ( 𝜑 ∧ ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ 𝐵 ) → ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ∈ 𝐵 ) |
91 |
20 62 82 90
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ) → ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ∈ 𝐵 ) |
92 |
91
|
fmpttd |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) : ( ran 𝐹 ∖ { 0 } ) ⟶ 𝐵 ) |
93 |
|
mptexg |
⊢ ( ( ran 𝐹 ∖ { 0 } ) ∈ V → ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) ∈ V ) |
94 |
19 93
|
syl |
⊢ ( 𝜑 → ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) ∈ V ) |
95 |
4
|
fvexi |
⊢ 0 ∈ V |
96 |
|
suppimacnv |
⊢ ( ( ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) ∈ V ∧ 0 ∈ V ) → ( ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) supp 0 ) = ( ◡ ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) “ ( V ∖ { 0 } ) ) ) |
97 |
94 95 96
|
sylancl |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) supp 0 ) = ( ◡ ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) “ ( V ∖ { 0 } ) ) ) |
98 |
1 2 3 4 5 6 7 8 9
|
sibfrn |
⊢ ( 𝜑 → ran 𝐹 ∈ Fin ) |
99 |
|
cnvimass |
⊢ ( ◡ ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) “ ( V ∖ { 0 } ) ) ⊆ dom ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) |
100 |
|
eqid |
⊢ ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) = ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) |
101 |
100
|
dmmptss |
⊢ dom ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) ⊆ ( ran 𝐹 ∖ { 0 } ) |
102 |
99 101
|
sstri |
⊢ ( ◡ ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) “ ( V ∖ { 0 } ) ) ⊆ ( ran 𝐹 ∖ { 0 } ) |
103 |
|
difss |
⊢ ( ran 𝐹 ∖ { 0 } ) ⊆ ran 𝐹 |
104 |
102 103
|
sstri |
⊢ ( ◡ ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) “ ( V ∖ { 0 } ) ) ⊆ ran 𝐹 |
105 |
|
ssfi |
⊢ ( ( ran 𝐹 ∈ Fin ∧ ( ◡ ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) “ ( V ∖ { 0 } ) ) ⊆ ran 𝐹 ) → ( ◡ ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) “ ( V ∖ { 0 } ) ) ∈ Fin ) |
106 |
98 104 105
|
sylancl |
⊢ ( 𝜑 → ( ◡ ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) “ ( V ∖ { 0 } ) ) ∈ Fin ) |
107 |
97 106
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) supp 0 ) ∈ Fin ) |
108 |
1 4 13 19 92 107
|
gsumcl2 |
⊢ ( 𝜑 → ( 𝑊 Σg ( 𝑥 ∈ ( ran 𝐹 ∖ { 0 } ) ↦ ( ( 𝐻 ‘ ( 𝑀 ‘ ( ◡ 𝐹 “ { 𝑥 } ) ) ) · 𝑥 ) ) ) ∈ 𝐵 ) |
109 |
16 108
|
eqeltrd |
⊢ ( 𝜑 → ( ( 𝑊 sitg 𝑀 ) ‘ 𝐹 ) ∈ 𝐵 ) |