Step |
Hyp |
Ref |
Expression |
1 |
|
sitgval.b |
⊢ 𝐵 = ( Base ‘ 𝑊 ) |
2 |
|
sitgval.j |
⊢ 𝐽 = ( TopOpen ‘ 𝑊 ) |
3 |
|
sitgval.s |
⊢ 𝑆 = ( sigaGen ‘ 𝐽 ) |
4 |
|
sitgval.0 |
⊢ 0 = ( 0g ‘ 𝑊 ) |
5 |
|
sitgval.x |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
6 |
|
sitgval.h |
⊢ 𝐻 = ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) |
7 |
|
sitgval.1 |
⊢ ( 𝜑 → 𝑊 ∈ 𝑉 ) |
8 |
|
sitgval.2 |
⊢ ( 𝜑 → 𝑀 ∈ ∪ ran measures ) |
9 |
|
sibfmbl.1 |
⊢ ( 𝜑 → 𝐹 ∈ dom ( 𝑊 sitg 𝑀 ) ) |
10 |
|
sitgclbn.1 |
⊢ ( 𝜑 → 𝑊 ∈ Ban ) |
11 |
|
sitgclbn.2 |
⊢ ( 𝜑 → ( Scalar ‘ 𝑊 ) ∈ ℝExt ) |
12 |
|
eqid |
⊢ ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 ) |
13 |
|
eqid |
⊢ ( ( dist ‘ ( Scalar ‘ 𝑊 ) ) ↾ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) × ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) = ( ( dist ‘ ( Scalar ‘ 𝑊 ) ) ↾ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) × ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) |
14 |
|
bncms |
⊢ ( 𝑊 ∈ Ban → 𝑊 ∈ CMetSp ) |
15 |
|
cmsms |
⊢ ( 𝑊 ∈ CMetSp → 𝑊 ∈ MetSp ) |
16 |
|
mstps |
⊢ ( 𝑊 ∈ MetSp → 𝑊 ∈ TopSp ) |
17 |
10 14 15 16
|
4syl |
⊢ ( 𝜑 → 𝑊 ∈ TopSp ) |
18 |
|
bnlmod |
⊢ ( 𝑊 ∈ Ban → 𝑊 ∈ LMod ) |
19 |
|
lmodcmn |
⊢ ( 𝑊 ∈ LMod → 𝑊 ∈ CMnd ) |
20 |
10 18 19
|
3syl |
⊢ ( 𝜑 → 𝑊 ∈ CMnd ) |
21 |
10 18
|
syl |
⊢ ( 𝜑 → 𝑊 ∈ LMod ) |
22 |
21
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑊 ∈ LMod ) |
23 |
|
imassrn |
⊢ ( 𝐻 “ ( 0 [,) +∞ ) ) ⊆ ran 𝐻 |
24 |
6
|
rneqi |
⊢ ran 𝐻 = ran ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) |
25 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) ) |
26 |
25
|
rrhfe |
⊢ ( ( Scalar ‘ 𝑊 ) ∈ ℝExt → ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) : ℝ ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
27 |
|
frn |
⊢ ( ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) : ℝ ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) → ran ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) ⊆ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
28 |
11 26 27
|
3syl |
⊢ ( 𝜑 → ran ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) ⊆ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
29 |
24 28
|
eqsstrid |
⊢ ( 𝜑 → ran 𝐻 ⊆ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
30 |
23 29
|
sstrid |
⊢ ( 𝜑 → ( 𝐻 “ ( 0 [,) +∞ ) ) ⊆ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
31 |
30
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ) → 𝑚 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
32 |
31
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑚 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) |
33 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ 𝐵 ) → 𝑥 ∈ 𝐵 ) |
34 |
1 12 5 25
|
lmodvscl |
⊢ ( ( 𝑊 ∈ LMod ∧ 𝑚 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑚 · 𝑥 ) ∈ 𝐵 ) |
35 |
22 32 33 34
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑚 ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ∧ 𝑥 ∈ 𝐵 ) → ( 𝑚 · 𝑥 ) ∈ 𝐵 ) |
36 |
1 2 3 4 5 6 7 8 9 12 13 17 20 11 35
|
sitgclg |
⊢ ( 𝜑 → ( ( 𝑊 sitg 𝑀 ) ‘ 𝐹 ) ∈ 𝐵 ) |