Metamath Proof Explorer


Theorem sitgclbn

Description: Closure of the Bochner integral on a simple function. This version is specific to Banach spaces, with additional conditions on its scalar field. (Contributed by Thierry Arnoux, 24-Feb-2018)

Ref Expression
Hypotheses sitgval.b 𝐵 = ( Base ‘ 𝑊 )
sitgval.j 𝐽 = ( TopOpen ‘ 𝑊 )
sitgval.s 𝑆 = ( sigaGen ‘ 𝐽 )
sitgval.0 0 = ( 0g𝑊 )
sitgval.x · = ( ·𝑠𝑊 )
sitgval.h 𝐻 = ( ℝHom ‘ ( Scalar ‘ 𝑊 ) )
sitgval.1 ( 𝜑𝑊𝑉 )
sitgval.2 ( 𝜑𝑀 ran measures )
sibfmbl.1 ( 𝜑𝐹 ∈ dom ( 𝑊 sitg 𝑀 ) )
sitgclbn.1 ( 𝜑𝑊 ∈ Ban )
sitgclbn.2 ( 𝜑 → ( Scalar ‘ 𝑊 ) ∈ ℝExt )
Assertion sitgclbn ( 𝜑 → ( ( 𝑊 sitg 𝑀 ) ‘ 𝐹 ) ∈ 𝐵 )

Proof

Step Hyp Ref Expression
1 sitgval.b 𝐵 = ( Base ‘ 𝑊 )
2 sitgval.j 𝐽 = ( TopOpen ‘ 𝑊 )
3 sitgval.s 𝑆 = ( sigaGen ‘ 𝐽 )
4 sitgval.0 0 = ( 0g𝑊 )
5 sitgval.x · = ( ·𝑠𝑊 )
6 sitgval.h 𝐻 = ( ℝHom ‘ ( Scalar ‘ 𝑊 ) )
7 sitgval.1 ( 𝜑𝑊𝑉 )
8 sitgval.2 ( 𝜑𝑀 ran measures )
9 sibfmbl.1 ( 𝜑𝐹 ∈ dom ( 𝑊 sitg 𝑀 ) )
10 sitgclbn.1 ( 𝜑𝑊 ∈ Ban )
11 sitgclbn.2 ( 𝜑 → ( Scalar ‘ 𝑊 ) ∈ ℝExt )
12 eqid ( Scalar ‘ 𝑊 ) = ( Scalar ‘ 𝑊 )
13 eqid ( ( dist ‘ ( Scalar ‘ 𝑊 ) ) ↾ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) × ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) ) = ( ( dist ‘ ( Scalar ‘ 𝑊 ) ) ↾ ( ( Base ‘ ( Scalar ‘ 𝑊 ) ) × ( Base ‘ ( Scalar ‘ 𝑊 ) ) ) )
14 bncms ( 𝑊 ∈ Ban → 𝑊 ∈ CMetSp )
15 10 14 syl ( 𝜑𝑊 ∈ CMetSp )
16 cmsms ( 𝑊 ∈ CMetSp → 𝑊 ∈ MetSp )
17 mstps ( 𝑊 ∈ MetSp → 𝑊 ∈ TopSp )
18 15 16 17 3syl ( 𝜑𝑊 ∈ TopSp )
19 bnlmod ( 𝑊 ∈ Ban → 𝑊 ∈ LMod )
20 lmodcmn ( 𝑊 ∈ LMod → 𝑊 ∈ CMnd )
21 10 19 20 3syl ( 𝜑𝑊 ∈ CMnd )
22 10 19 syl ( 𝜑𝑊 ∈ LMod )
23 22 3ad2ant1 ( ( 𝜑𝑚 ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ∧ 𝑥𝐵 ) → 𝑊 ∈ LMod )
24 imassrn ( 𝐻 “ ( 0 [,) +∞ ) ) ⊆ ran 𝐻
25 6 rneqi ran 𝐻 = ran ( ℝHom ‘ ( Scalar ‘ 𝑊 ) )
26 eqid ( Base ‘ ( Scalar ‘ 𝑊 ) ) = ( Base ‘ ( Scalar ‘ 𝑊 ) )
27 26 rrhfe ( ( Scalar ‘ 𝑊 ) ∈ ℝExt → ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) : ℝ ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
28 frn ( ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) : ℝ ⟶ ( Base ‘ ( Scalar ‘ 𝑊 ) ) → ran ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) ⊆ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
29 11 27 28 3syl ( 𝜑 → ran ( ℝHom ‘ ( Scalar ‘ 𝑊 ) ) ⊆ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
30 25 29 eqsstrid ( 𝜑 → ran 𝐻 ⊆ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
31 24 30 sstrid ( 𝜑 → ( 𝐻 “ ( 0 [,) +∞ ) ) ⊆ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
32 31 sselda ( ( 𝜑𝑚 ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ) → 𝑚 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
33 32 3adant3 ( ( 𝜑𝑚 ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ∧ 𝑥𝐵 ) → 𝑚 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) )
34 simp3 ( ( 𝜑𝑚 ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ∧ 𝑥𝐵 ) → 𝑥𝐵 )
35 1 12 5 26 lmodvscl ( ( 𝑊 ∈ LMod ∧ 𝑚 ∈ ( Base ‘ ( Scalar ‘ 𝑊 ) ) ∧ 𝑥𝐵 ) → ( 𝑚 · 𝑥 ) ∈ 𝐵 )
36 23 33 34 35 syl3anc ( ( 𝜑𝑚 ∈ ( 𝐻 “ ( 0 [,) +∞ ) ) ∧ 𝑥𝐵 ) → ( 𝑚 · 𝑥 ) ∈ 𝐵 )
37 1 2 3 4 5 6 7 8 9 12 13 18 21 11 36 sitgclg ( 𝜑 → ( ( 𝑊 sitg 𝑀 ) ‘ 𝐹 ) ∈ 𝐵 )