Metamath Proof Explorer


Theorem sitgclbn

Description: Closure of the Bochner integral on a simple function. This version is specific to Banach spaces, with additional conditions on its scalar field. (Contributed by Thierry Arnoux, 24-Feb-2018)

Ref Expression
Hypotheses sitgval.b B = Base W
sitgval.j J = TopOpen W
sitgval.s S = 𝛔 J
sitgval.0 0 ˙ = 0 W
sitgval.x · ˙ = W
sitgval.h H = ℝHom Scalar W
sitgval.1 φ W V
sitgval.2 φ M ran measures
sibfmbl.1 φ F M W
sitgclbn.1 φ W Ban
sitgclbn.2 φ Scalar W ℝExt
Assertion sitgclbn φ W F dM B

Proof

Step Hyp Ref Expression
1 sitgval.b B = Base W
2 sitgval.j J = TopOpen W
3 sitgval.s S = 𝛔 J
4 sitgval.0 0 ˙ = 0 W
5 sitgval.x · ˙ = W
6 sitgval.h H = ℝHom Scalar W
7 sitgval.1 φ W V
8 sitgval.2 φ M ran measures
9 sibfmbl.1 φ F M W
10 sitgclbn.1 φ W Ban
11 sitgclbn.2 φ Scalar W ℝExt
12 eqid Scalar W = Scalar W
13 eqid dist Scalar W Base Scalar W × Base Scalar W = dist Scalar W Base Scalar W × Base Scalar W
14 bncms W Ban W CMetSp
15 cmsms W CMetSp W MetSp
16 mstps W MetSp W TopSp
17 10 14 15 16 4syl φ W TopSp
18 bnlmod W Ban W LMod
19 lmodcmn W LMod W CMnd
20 10 18 19 3syl φ W CMnd
21 10 18 syl φ W LMod
22 21 3ad2ant1 φ m H 0 +∞ x B W LMod
23 imassrn H 0 +∞ ran H
24 6 rneqi ran H = ran ℝHom Scalar W
25 eqid Base Scalar W = Base Scalar W
26 25 rrhfe Scalar W ℝExt ℝHom Scalar W : Base Scalar W
27 frn ℝHom Scalar W : Base Scalar W ran ℝHom Scalar W Base Scalar W
28 11 26 27 3syl φ ran ℝHom Scalar W Base Scalar W
29 24 28 eqsstrid φ ran H Base Scalar W
30 23 29 sstrid φ H 0 +∞ Base Scalar W
31 30 sselda φ m H 0 +∞ m Base Scalar W
32 31 3adant3 φ m H 0 +∞ x B m Base Scalar W
33 simp3 φ m H 0 +∞ x B x B
34 1 12 5 25 lmodvscl W LMod m Base Scalar W x B m · ˙ x B
35 22 32 33 34 syl3anc φ m H 0 +∞ x B m · ˙ x B
36 1 2 3 4 5 6 7 8 9 12 13 17 20 11 35 sitgclg φ W F dM B