| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sitgval.b |
|- B = ( Base ` W ) |
| 2 |
|
sitgval.j |
|- J = ( TopOpen ` W ) |
| 3 |
|
sitgval.s |
|- S = ( sigaGen ` J ) |
| 4 |
|
sitgval.0 |
|- .0. = ( 0g ` W ) |
| 5 |
|
sitgval.x |
|- .x. = ( .s ` W ) |
| 6 |
|
sitgval.h |
|- H = ( RRHom ` ( Scalar ` W ) ) |
| 7 |
|
sitgval.1 |
|- ( ph -> W e. V ) |
| 8 |
|
sitgval.2 |
|- ( ph -> M e. U. ran measures ) |
| 9 |
|
sibfmbl.1 |
|- ( ph -> F e. dom ( W sitg M ) ) |
| 10 |
|
sitgclg.g |
|- G = ( Scalar ` W ) |
| 11 |
|
sitgclg.d |
|- D = ( ( dist ` G ) |` ( ( Base ` G ) X. ( Base ` G ) ) ) |
| 12 |
|
sitgclg.1 |
|- ( ph -> W e. TopSp ) |
| 13 |
|
sitgclg.2 |
|- ( ph -> W e. CMnd ) |
| 14 |
|
sitgclg.3 |
|- ( ph -> ( Scalar ` W ) e. RRExt ) |
| 15 |
|
sitgclg.4 |
|- ( ( ph /\ m e. ( H " ( 0 [,) +oo ) ) /\ x e. B ) -> ( m .x. x ) e. B ) |
| 16 |
1 2 3 4 5 6 7 8 9
|
sitgfval |
|- ( ph -> ( ( W sitg M ) ` F ) = ( W gsum ( x e. ( ran F \ { .0. } ) |-> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) ) ) |
| 17 |
|
rnexg |
|- ( F e. dom ( W sitg M ) -> ran F e. _V ) |
| 18 |
|
difexg |
|- ( ran F e. _V -> ( ran F \ { .0. } ) e. _V ) |
| 19 |
9 17 18
|
3syl |
|- ( ph -> ( ran F \ { .0. } ) e. _V ) |
| 20 |
|
simpl |
|- ( ( ph /\ x e. ( ran F \ { .0. } ) ) -> ph ) |
| 21 |
1 2 3 4 5 6 7 8 9
|
sibfima |
|- ( ( ph /\ x e. ( ran F \ { .0. } ) ) -> ( M ` ( `' F " { x } ) ) e. ( 0 [,) +oo ) ) |
| 22 |
10
|
fveq2i |
|- ( dist ` G ) = ( dist ` ( Scalar ` W ) ) |
| 23 |
10
|
fveq2i |
|- ( Base ` G ) = ( Base ` ( Scalar ` W ) ) |
| 24 |
23 23
|
xpeq12i |
|- ( ( Base ` G ) X. ( Base ` G ) ) = ( ( Base ` ( Scalar ` W ) ) X. ( Base ` ( Scalar ` W ) ) ) |
| 25 |
22 24
|
reseq12i |
|- ( ( dist ` G ) |` ( ( Base ` G ) X. ( Base ` G ) ) ) = ( ( dist ` ( Scalar ` W ) ) |` ( ( Base ` ( Scalar ` W ) ) X. ( Base ` ( Scalar ` W ) ) ) ) |
| 26 |
11 25
|
eqtri |
|- D = ( ( dist ` ( Scalar ` W ) ) |` ( ( Base ` ( Scalar ` W ) ) X. ( Base ` ( Scalar ` W ) ) ) ) |
| 27 |
|
eqid |
|- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
| 28 |
|
eqid |
|- ( Base ` ( Scalar ` W ) ) = ( Base ` ( Scalar ` W ) ) |
| 29 |
10
|
fveq2i |
|- ( TopOpen ` G ) = ( TopOpen ` ( Scalar ` W ) ) |
| 30 |
10
|
fveq2i |
|- ( ZMod ` G ) = ( ZMod ` ( Scalar ` W ) ) |
| 31 |
10 14
|
eqeltrid |
|- ( ph -> G e. RRExt ) |
| 32 |
|
rrextdrg |
|- ( G e. RRExt -> G e. DivRing ) |
| 33 |
31 32
|
syl |
|- ( ph -> G e. DivRing ) |
| 34 |
10 33
|
eqeltrrid |
|- ( ph -> ( Scalar ` W ) e. DivRing ) |
| 35 |
|
rrextnrg |
|- ( G e. RRExt -> G e. NrmRing ) |
| 36 |
31 35
|
syl |
|- ( ph -> G e. NrmRing ) |
| 37 |
10 36
|
eqeltrrid |
|- ( ph -> ( Scalar ` W ) e. NrmRing ) |
| 38 |
|
eqid |
|- ( ZMod ` G ) = ( ZMod ` G ) |
| 39 |
38
|
rrextnlm |
|- ( G e. RRExt -> ( ZMod ` G ) e. NrmMod ) |
| 40 |
31 39
|
syl |
|- ( ph -> ( ZMod ` G ) e. NrmMod ) |
| 41 |
10
|
fveq2i |
|- ( chr ` G ) = ( chr ` ( Scalar ` W ) ) |
| 42 |
|
rrextchr |
|- ( G e. RRExt -> ( chr ` G ) = 0 ) |
| 43 |
31 42
|
syl |
|- ( ph -> ( chr ` G ) = 0 ) |
| 44 |
41 43
|
eqtr3id |
|- ( ph -> ( chr ` ( Scalar ` W ) ) = 0 ) |
| 45 |
|
rrextcusp |
|- ( G e. RRExt -> G e. CUnifSp ) |
| 46 |
31 45
|
syl |
|- ( ph -> G e. CUnifSp ) |
| 47 |
10 46
|
eqeltrrid |
|- ( ph -> ( Scalar ` W ) e. CUnifSp ) |
| 48 |
10
|
fveq2i |
|- ( UnifSt ` G ) = ( UnifSt ` ( Scalar ` W ) ) |
| 49 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 50 |
49 11
|
rrextust |
|- ( G e. RRExt -> ( UnifSt ` G ) = ( metUnif ` D ) ) |
| 51 |
31 50
|
syl |
|- ( ph -> ( UnifSt ` G ) = ( metUnif ` D ) ) |
| 52 |
48 51
|
eqtr3id |
|- ( ph -> ( UnifSt ` ( Scalar ` W ) ) = ( metUnif ` D ) ) |
| 53 |
26 27 28 29 30 34 37 40 44 47 52
|
rrhf |
|- ( ph -> ( RRHom ` ( Scalar ` W ) ) : RR --> ( Base ` ( Scalar ` W ) ) ) |
| 54 |
6
|
feq1i |
|- ( H : RR --> ( Base ` ( Scalar ` W ) ) <-> ( RRHom ` ( Scalar ` W ) ) : RR --> ( Base ` ( Scalar ` W ) ) ) |
| 55 |
53 54
|
sylibr |
|- ( ph -> H : RR --> ( Base ` ( Scalar ` W ) ) ) |
| 56 |
55
|
ffund |
|- ( ph -> Fun H ) |
| 57 |
|
rge0ssre |
|- ( 0 [,) +oo ) C_ RR |
| 58 |
55
|
fdmd |
|- ( ph -> dom H = RR ) |
| 59 |
57 58
|
sseqtrrid |
|- ( ph -> ( 0 [,) +oo ) C_ dom H ) |
| 60 |
|
funfvima2 |
|- ( ( Fun H /\ ( 0 [,) +oo ) C_ dom H ) -> ( ( M ` ( `' F " { x } ) ) e. ( 0 [,) +oo ) -> ( H ` ( M ` ( `' F " { x } ) ) ) e. ( H " ( 0 [,) +oo ) ) ) ) |
| 61 |
56 59 60
|
syl2anc |
|- ( ph -> ( ( M ` ( `' F " { x } ) ) e. ( 0 [,) +oo ) -> ( H ` ( M ` ( `' F " { x } ) ) ) e. ( H " ( 0 [,) +oo ) ) ) ) |
| 62 |
20 21 61
|
sylc |
|- ( ( ph /\ x e. ( ran F \ { .0. } ) ) -> ( H ` ( M ` ( `' F " { x } ) ) ) e. ( H " ( 0 [,) +oo ) ) ) |
| 63 |
|
dmmeas |
|- ( M e. U. ran measures -> dom M e. U. ran sigAlgebra ) |
| 64 |
8 63
|
syl |
|- ( ph -> dom M e. U. ran sigAlgebra ) |
| 65 |
2
|
fvexi |
|- J e. _V |
| 66 |
65
|
a1i |
|- ( ph -> J e. _V ) |
| 67 |
66
|
sgsiga |
|- ( ph -> ( sigaGen ` J ) e. U. ran sigAlgebra ) |
| 68 |
3 67
|
eqeltrid |
|- ( ph -> S e. U. ran sigAlgebra ) |
| 69 |
1 2 3 4 5 6 7 8 9
|
sibfmbl |
|- ( ph -> F e. ( dom M MblFnM S ) ) |
| 70 |
64 68 69
|
mbfmf |
|- ( ph -> F : U. dom M --> U. S ) |
| 71 |
70
|
frnd |
|- ( ph -> ran F C_ U. S ) |
| 72 |
3
|
unieqi |
|- U. S = U. ( sigaGen ` J ) |
| 73 |
|
unisg |
|- ( J e. _V -> U. ( sigaGen ` J ) = U. J ) |
| 74 |
65 73
|
mp1i |
|- ( ph -> U. ( sigaGen ` J ) = U. J ) |
| 75 |
72 74
|
eqtrid |
|- ( ph -> U. S = U. J ) |
| 76 |
1 2
|
tpsuni |
|- ( W e. TopSp -> B = U. J ) |
| 77 |
12 76
|
syl |
|- ( ph -> B = U. J ) |
| 78 |
75 77
|
eqtr4d |
|- ( ph -> U. S = B ) |
| 79 |
71 78
|
sseqtrd |
|- ( ph -> ran F C_ B ) |
| 80 |
79
|
ssdifd |
|- ( ph -> ( ran F \ { .0. } ) C_ ( B \ { .0. } ) ) |
| 81 |
80
|
sselda |
|- ( ( ph /\ x e. ( ran F \ { .0. } ) ) -> x e. ( B \ { .0. } ) ) |
| 82 |
81
|
eldifad |
|- ( ( ph /\ x e. ( ran F \ { .0. } ) ) -> x e. B ) |
| 83 |
|
simp2 |
|- ( ( ph /\ ( H ` ( M ` ( `' F " { x } ) ) ) e. ( H " ( 0 [,) +oo ) ) /\ x e. B ) -> ( H ` ( M ` ( `' F " { x } ) ) ) e. ( H " ( 0 [,) +oo ) ) ) |
| 84 |
|
eleq1 |
|- ( m = ( H ` ( M ` ( `' F " { x } ) ) ) -> ( m e. ( H " ( 0 [,) +oo ) ) <-> ( H ` ( M ` ( `' F " { x } ) ) ) e. ( H " ( 0 [,) +oo ) ) ) ) |
| 85 |
84
|
3anbi2d |
|- ( m = ( H ` ( M ` ( `' F " { x } ) ) ) -> ( ( ph /\ m e. ( H " ( 0 [,) +oo ) ) /\ x e. B ) <-> ( ph /\ ( H ` ( M ` ( `' F " { x } ) ) ) e. ( H " ( 0 [,) +oo ) ) /\ x e. B ) ) ) |
| 86 |
|
oveq1 |
|- ( m = ( H ` ( M ` ( `' F " { x } ) ) ) -> ( m .x. x ) = ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) |
| 87 |
86
|
eleq1d |
|- ( m = ( H ` ( M ` ( `' F " { x } ) ) ) -> ( ( m .x. x ) e. B <-> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) e. B ) ) |
| 88 |
85 87
|
imbi12d |
|- ( m = ( H ` ( M ` ( `' F " { x } ) ) ) -> ( ( ( ph /\ m e. ( H " ( 0 [,) +oo ) ) /\ x e. B ) -> ( m .x. x ) e. B ) <-> ( ( ph /\ ( H ` ( M ` ( `' F " { x } ) ) ) e. ( H " ( 0 [,) +oo ) ) /\ x e. B ) -> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) e. B ) ) ) |
| 89 |
88 15
|
vtoclg |
|- ( ( H ` ( M ` ( `' F " { x } ) ) ) e. ( H " ( 0 [,) +oo ) ) -> ( ( ph /\ ( H ` ( M ` ( `' F " { x } ) ) ) e. ( H " ( 0 [,) +oo ) ) /\ x e. B ) -> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) e. B ) ) |
| 90 |
83 89
|
mpcom |
|- ( ( ph /\ ( H ` ( M ` ( `' F " { x } ) ) ) e. ( H " ( 0 [,) +oo ) ) /\ x e. B ) -> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) e. B ) |
| 91 |
20 62 82 90
|
syl3anc |
|- ( ( ph /\ x e. ( ran F \ { .0. } ) ) -> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) e. B ) |
| 92 |
91
|
fmpttd |
|- ( ph -> ( x e. ( ran F \ { .0. } ) |-> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) : ( ran F \ { .0. } ) --> B ) |
| 93 |
|
mptexg |
|- ( ( ran F \ { .0. } ) e. _V -> ( x e. ( ran F \ { .0. } ) |-> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) e. _V ) |
| 94 |
19 93
|
syl |
|- ( ph -> ( x e. ( ran F \ { .0. } ) |-> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) e. _V ) |
| 95 |
4
|
fvexi |
|- .0. e. _V |
| 96 |
|
suppimacnv |
|- ( ( ( x e. ( ran F \ { .0. } ) |-> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) e. _V /\ .0. e. _V ) -> ( ( x e. ( ran F \ { .0. } ) |-> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) supp .0. ) = ( `' ( x e. ( ran F \ { .0. } ) |-> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) " ( _V \ { .0. } ) ) ) |
| 97 |
94 95 96
|
sylancl |
|- ( ph -> ( ( x e. ( ran F \ { .0. } ) |-> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) supp .0. ) = ( `' ( x e. ( ran F \ { .0. } ) |-> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) " ( _V \ { .0. } ) ) ) |
| 98 |
1 2 3 4 5 6 7 8 9
|
sibfrn |
|- ( ph -> ran F e. Fin ) |
| 99 |
|
cnvimass |
|- ( `' ( x e. ( ran F \ { .0. } ) |-> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) " ( _V \ { .0. } ) ) C_ dom ( x e. ( ran F \ { .0. } ) |-> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) |
| 100 |
|
eqid |
|- ( x e. ( ran F \ { .0. } ) |-> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) = ( x e. ( ran F \ { .0. } ) |-> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) |
| 101 |
100
|
dmmptss |
|- dom ( x e. ( ran F \ { .0. } ) |-> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) C_ ( ran F \ { .0. } ) |
| 102 |
99 101
|
sstri |
|- ( `' ( x e. ( ran F \ { .0. } ) |-> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) " ( _V \ { .0. } ) ) C_ ( ran F \ { .0. } ) |
| 103 |
|
difss |
|- ( ran F \ { .0. } ) C_ ran F |
| 104 |
102 103
|
sstri |
|- ( `' ( x e. ( ran F \ { .0. } ) |-> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) " ( _V \ { .0. } ) ) C_ ran F |
| 105 |
|
ssfi |
|- ( ( ran F e. Fin /\ ( `' ( x e. ( ran F \ { .0. } ) |-> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) " ( _V \ { .0. } ) ) C_ ran F ) -> ( `' ( x e. ( ran F \ { .0. } ) |-> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) " ( _V \ { .0. } ) ) e. Fin ) |
| 106 |
98 104 105
|
sylancl |
|- ( ph -> ( `' ( x e. ( ran F \ { .0. } ) |-> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) " ( _V \ { .0. } ) ) e. Fin ) |
| 107 |
97 106
|
eqeltrd |
|- ( ph -> ( ( x e. ( ran F \ { .0. } ) |-> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) supp .0. ) e. Fin ) |
| 108 |
1 4 13 19 92 107
|
gsumcl2 |
|- ( ph -> ( W gsum ( x e. ( ran F \ { .0. } ) |-> ( ( H ` ( M ` ( `' F " { x } ) ) ) .x. x ) ) ) e. B ) |
| 109 |
16 108
|
eqeltrd |
|- ( ph -> ( ( W sitg M ) ` F ) e. B ) |