Metamath Proof Explorer


Theorem sibfof

Description: Applying function operations on simple functions results in simple functions with regard to the destination space, provided the operation fulfills a simple condition. (Contributed by Thierry Arnoux, 12-Mar-2018)

Ref Expression
Hypotheses sitgval.b B = Base W
sitgval.j J = TopOpen W
sitgval.s S = 𝛔 J
sitgval.0 0 ˙ = 0 W
sitgval.x · ˙ = W
sitgval.h H = ℝHom Scalar W
sitgval.1 φ W V
sitgval.2 φ M ran measures
sibfmbl.1 φ F M W
sibfof.c C = Base K
sibfof.0 φ W TopSp
sibfof.1 φ + ˙ : B × B C
sibfof.2 φ G M W
sibfof.3 φ K TopSp
sibfof.4 φ J Fre
sibfof.5 φ 0 ˙ + ˙ 0 ˙ = 0 K
Assertion sibfof φ F + ˙ f G M K

Proof

Step Hyp Ref Expression
1 sitgval.b B = Base W
2 sitgval.j J = TopOpen W
3 sitgval.s S = 𝛔 J
4 sitgval.0 0 ˙ = 0 W
5 sitgval.x · ˙ = W
6 sitgval.h H = ℝHom Scalar W
7 sitgval.1 φ W V
8 sitgval.2 φ M ran measures
9 sibfmbl.1 φ F M W
10 sibfof.c C = Base K
11 sibfof.0 φ W TopSp
12 sibfof.1 φ + ˙ : B × B C
13 sibfof.2 φ G M W
14 sibfof.3 φ K TopSp
15 sibfof.4 φ J Fre
16 sibfof.5 φ 0 ˙ + ˙ 0 ˙ = 0 K
17 1 2 tpsuni W TopSp B = J
18 11 17 syl φ B = J
19 18 sqxpeqd φ B × B = J × J
20 19 feq2d φ + ˙ : B × B C + ˙ : J × J C
21 12 20 mpbid φ + ˙ : J × J C
22 21 fovrnda φ z J x J z + ˙ x C
23 1 2 3 4 5 6 7 8 9 sibff φ F : dom M J
24 1 2 3 4 5 6 7 8 13 sibff φ G : dom M J
25 dmexg M ran measures dom M V
26 uniexg dom M V dom M V
27 8 25 26 3syl φ dom M V
28 inidm dom M dom M = dom M
29 22 23 24 27 27 28 off φ F + ˙ f G : dom M C
30 eqid TopOpen K = TopOpen K
31 10 30 tpsuni K TopSp C = TopOpen K
32 14 31 syl φ C = TopOpen K
33 fvex TopOpen K V
34 unisg TopOpen K V 𝛔 TopOpen K = TopOpen K
35 33 34 ax-mp 𝛔 TopOpen K = TopOpen K
36 32 35 eqtr4di φ C = 𝛔 TopOpen K
37 36 feq3d φ F + ˙ f G : dom M C F + ˙ f G : dom M 𝛔 TopOpen K
38 29 37 mpbid φ F + ˙ f G : dom M 𝛔 TopOpen K
39 33 a1i φ TopOpen K V
40 39 sgsiga φ 𝛔 TopOpen K ran sigAlgebra
41 40 uniexd φ 𝛔 TopOpen K V
42 41 27 elmapd φ F + ˙ f G 𝛔 TopOpen K dom M F + ˙ f G : dom M 𝛔 TopOpen K
43 38 42 mpbird φ F + ˙ f G 𝛔 TopOpen K dom M
44 inundif b ran F + ˙ f G b ran F + ˙ f G = b
45 44 imaeq2i F + ˙ f G -1 b ran F + ˙ f G b ran F + ˙ f G = F + ˙ f G -1 b
46 ffun F + ˙ f G : dom M C Fun F + ˙ f G
47 unpreima Fun F + ˙ f G F + ˙ f G -1 b ran F + ˙ f G b ran F + ˙ f G = F + ˙ f G -1 b ran F + ˙ f G F + ˙ f G -1 b ran F + ˙ f G
48 29 46 47 3syl φ F + ˙ f G -1 b ran F + ˙ f G b ran F + ˙ f G = F + ˙ f G -1 b ran F + ˙ f G F + ˙ f G -1 b ran F + ˙ f G
49 48 adantr φ b 𝛔 TopOpen K F + ˙ f G -1 b ran F + ˙ f G b ran F + ˙ f G = F + ˙ f G -1 b ran F + ˙ f G F + ˙ f G -1 b ran F + ˙ f G
50 45 49 eqtr3id φ b 𝛔 TopOpen K F + ˙ f G -1 b = F + ˙ f G -1 b ran F + ˙ f G F + ˙ f G -1 b ran F + ˙ f G
51 dmmeas M ran measures dom M ran sigAlgebra
52 8 51 syl φ dom M ran sigAlgebra
53 52 adantr φ b 𝛔 TopOpen K dom M ran sigAlgebra
54 imaiun F + ˙ f G -1 z b ran F + ˙ f G z = z b ran F + ˙ f G F + ˙ f G -1 z
55 iunid z b ran F + ˙ f G z = b ran F + ˙ f G
56 55 imaeq2i F + ˙ f G -1 z b ran F + ˙ f G z = F + ˙ f G -1 b ran F + ˙ f G
57 54 56 eqtr3i z b ran F + ˙ f G F + ˙ f G -1 z = F + ˙ f G -1 b ran F + ˙ f G
58 inss2 b ran F + ˙ f G ran F + ˙ f G
59 18 feq3d φ F : dom M B F : dom M J
60 23 59 mpbird φ F : dom M B
61 18 feq3d φ G : dom M B G : dom M J
62 24 61 mpbird φ G : dom M B
63 12 ffnd φ + ˙ Fn B × B
64 60 62 27 63 ofpreima2 φ F + ˙ f G -1 z = p + ˙ -1 z ran F × ran G F -1 1 st p G -1 2 nd p
65 64 adantr φ z ran F + ˙ f G F + ˙ f G -1 z = p + ˙ -1 z ran F × ran G F -1 1 st p G -1 2 nd p
66 52 adantr φ z ran F + ˙ f G dom M ran sigAlgebra
67 52 ad2antrr φ z ran F + ˙ f G p + ˙ -1 z ran F × ran G dom M ran sigAlgebra
68 simpll φ z ran F + ˙ f G p + ˙ -1 z ran F × ran G φ
69 inss1 + ˙ -1 z ran F × ran G + ˙ -1 z
70 cnvimass + ˙ -1 z dom + ˙
71 70 12 fssdm φ + ˙ -1 z B × B
72 71 adantr φ z ran F + ˙ f G + ˙ -1 z B × B
73 69 72 sstrid φ z ran F + ˙ f G + ˙ -1 z ran F × ran G B × B
74 73 sselda φ z ran F + ˙ f G p + ˙ -1 z ran F × ran G p B × B
75 52 adantr φ p B × B dom M ran sigAlgebra
76 15 sgsiga φ 𝛔 J ran sigAlgebra
77 3 76 eqeltrid φ S ran sigAlgebra
78 77 adantr φ p B × B S ran sigAlgebra
79 1 2 3 4 5 6 7 8 9 sibfmbl φ F dom M MblFn μ S
80 79 adantr φ p B × B F dom M MblFn μ S
81 2 tpstop W TopSp J Top
82 cldssbrsiga J Top Clsd J 𝛔 J
83 11 81 82 3syl φ Clsd J 𝛔 J
84 83 adantr φ p B × B Clsd J 𝛔 J
85 15 adantr φ p B × B J Fre
86 xp1st p B × B 1 st p B
87 86 adantl φ p B × B 1 st p B
88 18 adantr φ p B × B B = J
89 87 88 eleqtrd φ p B × B 1 st p J
90 eqid J = J
91 90 t1sncld J Fre 1 st p J 1 st p Clsd J
92 85 89 91 syl2anc φ p B × B 1 st p Clsd J
93 84 92 sseldd φ p B × B 1 st p 𝛔 J
94 93 3 eleqtrrdi φ p B × B 1 st p S
95 75 78 80 94 mbfmcnvima φ p B × B F -1 1 st p dom M
96 68 74 95 syl2anc φ z ran F + ˙ f G p + ˙ -1 z ran F × ran G F -1 1 st p dom M
97 1 2 3 4 5 6 7 8 13 sibfmbl φ G dom M MblFn μ S
98 97 adantr φ p B × B G dom M MblFn μ S
99 xp2nd p B × B 2 nd p B
100 99 adantl φ p B × B 2 nd p B
101 100 88 eleqtrd φ p B × B 2 nd p J
102 90 t1sncld J Fre 2 nd p J 2 nd p Clsd J
103 85 101 102 syl2anc φ p B × B 2 nd p Clsd J
104 84 103 sseldd φ p B × B 2 nd p 𝛔 J
105 104 3 eleqtrrdi φ p B × B 2 nd p S
106 75 78 98 105 mbfmcnvima φ p B × B G -1 2 nd p dom M
107 68 74 106 syl2anc φ z ran F + ˙ f G p + ˙ -1 z ran F × ran G G -1 2 nd p dom M
108 inelsiga dom M ran sigAlgebra F -1 1 st p dom M G -1 2 nd p dom M F -1 1 st p G -1 2 nd p dom M
109 67 96 107 108 syl3anc φ z ran F + ˙ f G p + ˙ -1 z ran F × ran G F -1 1 st p G -1 2 nd p dom M
110 109 ralrimiva φ z ran F + ˙ f G p + ˙ -1 z ran F × ran G F -1 1 st p G -1 2 nd p dom M
111 1 2 3 4 5 6 7 8 9 sibfrn φ ran F Fin
112 1 2 3 4 5 6 7 8 13 sibfrn φ ran G Fin
113 xpfi ran F Fin ran G Fin ran F × ran G Fin
114 111 112 113 syl2anc φ ran F × ran G Fin
115 inss2 + ˙ -1 z ran F × ran G ran F × ran G
116 ssdomg ran F × ran G Fin + ˙ -1 z ran F × ran G ran F × ran G + ˙ -1 z ran F × ran G ran F × ran G
117 114 115 116 mpisyl φ + ˙ -1 z ran F × ran G ran F × ran G
118 isfinite ran F × ran G Fin ran F × ran G ω
119 118 biimpi ran F × ran G Fin ran F × ran G ω
120 sdomdom ran F × ran G ω ran F × ran G ω
121 114 119 120 3syl φ ran F × ran G ω
122 domtr + ˙ -1 z ran F × ran G ran F × ran G ran F × ran G ω + ˙ -1 z ran F × ran G ω
123 117 121 122 syl2anc φ + ˙ -1 z ran F × ran G ω
124 123 adantr φ z ran F + ˙ f G + ˙ -1 z ran F × ran G ω
125 nfcv _ p + ˙ -1 z ran F × ran G
126 125 sigaclcuni dom M ran sigAlgebra p + ˙ -1 z ran F × ran G F -1 1 st p G -1 2 nd p dom M + ˙ -1 z ran F × ran G ω p + ˙ -1 z ran F × ran G F -1 1 st p G -1 2 nd p dom M
127 66 110 124 126 syl3anc φ z ran F + ˙ f G p + ˙ -1 z ran F × ran G F -1 1 st p G -1 2 nd p dom M
128 65 127 eqeltrd φ z ran F + ˙ f G F + ˙ f G -1 z dom M
129 128 ralrimiva φ z ran F + ˙ f G F + ˙ f G -1 z dom M
130 ssralv b ran F + ˙ f G ran F + ˙ f G z ran F + ˙ f G F + ˙ f G -1 z dom M z b ran F + ˙ f G F + ˙ f G -1 z dom M
131 58 129 130 mpsyl φ z b ran F + ˙ f G F + ˙ f G -1 z dom M
132 131 adantr φ b 𝛔 TopOpen K z b ran F + ˙ f G F + ˙ f G -1 z dom M
133 12 ffund φ Fun + ˙
134 imafi Fun + ˙ ran F × ran G Fin + ˙ ran F × ran G Fin
135 133 114 134 syl2anc φ + ˙ ran F × ran G Fin
136 23 24 21 27 ofrn2 φ ran F + ˙ f G + ˙ ran F × ran G
137 ssfi + ˙ ran F × ran G Fin ran F + ˙ f G + ˙ ran F × ran G ran F + ˙ f G Fin
138 135 136 137 syl2anc φ ran F + ˙ f G Fin
139 ssdomg ran F + ˙ f G Fin b ran F + ˙ f G ran F + ˙ f G b ran F + ˙ f G ran F + ˙ f G
140 138 58 139 mpisyl φ b ran F + ˙ f G ran F + ˙ f G
141 isfinite ran F + ˙ f G Fin ran F + ˙ f G ω
142 138 141 sylib φ ran F + ˙ f G ω
143 sdomdom ran F + ˙ f G ω ran F + ˙ f G ω
144 142 143 syl φ ran F + ˙ f G ω
145 domtr b ran F + ˙ f G ran F + ˙ f G ran F + ˙ f G ω b ran F + ˙ f G ω
146 140 144 145 syl2anc φ b ran F + ˙ f G ω
147 146 adantr φ b 𝛔 TopOpen K b ran F + ˙ f G ω
148 nfcv _ z b ran F + ˙ f G
149 148 sigaclcuni dom M ran sigAlgebra z b ran F + ˙ f G F + ˙ f G -1 z dom M b ran F + ˙ f G ω z b ran F + ˙ f G F + ˙ f G -1 z dom M
150 53 132 147 149 syl3anc φ b 𝛔 TopOpen K z b ran F + ˙ f G F + ˙ f G -1 z dom M
151 57 150 eqeltrrid φ b 𝛔 TopOpen K F + ˙ f G -1 b ran F + ˙ f G dom M
152 difpreima Fun F + ˙ f G F + ˙ f G -1 b ran F + ˙ f G = F + ˙ f G -1 b F + ˙ f G -1 ran F + ˙ f G
153 29 46 152 3syl φ F + ˙ f G -1 b ran F + ˙ f G = F + ˙ f G -1 b F + ˙ f G -1 ran F + ˙ f G
154 cnvimarndm F + ˙ f G -1 ran F + ˙ f G = dom F + ˙ f G
155 154 difeq2i F + ˙ f G -1 b F + ˙ f G -1 ran F + ˙ f G = F + ˙ f G -1 b dom F + ˙ f G
156 cnvimass F + ˙ f G -1 b dom F + ˙ f G
157 ssdif0 F + ˙ f G -1 b dom F + ˙ f G F + ˙ f G -1 b dom F + ˙ f G =
158 156 157 mpbi F + ˙ f G -1 b dom F + ˙ f G =
159 155 158 eqtri F + ˙ f G -1 b F + ˙ f G -1 ran F + ˙ f G =
160 153 159 eqtrdi φ F + ˙ f G -1 b ran F + ˙ f G =
161 0elsiga dom M ran sigAlgebra dom M
162 8 51 161 3syl φ dom M
163 160 162 eqeltrd φ F + ˙ f G -1 b ran F + ˙ f G dom M
164 163 adantr φ b 𝛔 TopOpen K F + ˙ f G -1 b ran F + ˙ f G dom M
165 unelsiga dom M ran sigAlgebra F + ˙ f G -1 b ran F + ˙ f G dom M F + ˙ f G -1 b ran F + ˙ f G dom M F + ˙ f G -1 b ran F + ˙ f G F + ˙ f G -1 b ran F + ˙ f G dom M
166 53 151 164 165 syl3anc φ b 𝛔 TopOpen K F + ˙ f G -1 b ran F + ˙ f G F + ˙ f G -1 b ran F + ˙ f G dom M
167 50 166 eqeltrd φ b 𝛔 TopOpen K F + ˙ f G -1 b dom M
168 167 ralrimiva φ b 𝛔 TopOpen K F + ˙ f G -1 b dom M
169 52 40 ismbfm φ F + ˙ f G dom M MblFn μ 𝛔 TopOpen K F + ˙ f G 𝛔 TopOpen K dom M b 𝛔 TopOpen K F + ˙ f G -1 b dom M
170 43 168 169 mpbir2and φ F + ˙ f G dom M MblFn μ 𝛔 TopOpen K
171 64 adantr φ z ran F + ˙ f G 0 K F + ˙ f G -1 z = p + ˙ -1 z ran F × ran G F -1 1 st p G -1 2 nd p
172 171 fveq2d φ z ran F + ˙ f G 0 K M F + ˙ f G -1 z = M p + ˙ -1 z ran F × ran G F -1 1 st p G -1 2 nd p
173 measbasedom M ran measures M measures dom M
174 8 173 sylib φ M measures dom M
175 174 adantr φ z ran F + ˙ f G 0 K M measures dom M
176 eldifi z ran F + ˙ f G 0 K z ran F + ˙ f G
177 176 110 sylan2 φ z ran F + ˙ f G 0 K p + ˙ -1 z ran F × ran G F -1 1 st p G -1 2 nd p dom M
178 123 adantr φ z ran F + ˙ f G 0 K + ˙ -1 z ran F × ran G ω
179 sneq x = 1 st p x = 1 st p
180 179 imaeq2d x = 1 st p F -1 x = F -1 1 st p
181 sneq y = 2 nd p y = 2 nd p
182 181 imaeq2d y = 2 nd p G -1 y = G -1 2 nd p
183 23 ffund φ Fun F
184 sndisj Disj x ran F x
185 disjpreima Fun F Disj x ran F x Disj x ran F F -1 x
186 183 184 185 sylancl φ Disj x ran F F -1 x
187 24 ffund φ Fun G
188 sndisj Disj y ran G y
189 disjpreima Fun G Disj y ran G y Disj y ran G G -1 y
190 187 188 189 sylancl φ Disj y ran G G -1 y
191 180 182 186 190 disjxpin φ Disj p ran F × ran G F -1 1 st p G -1 2 nd p
192 disjss1 + ˙ -1 z ran F × ran G ran F × ran G Disj p ran F × ran G F -1 1 st p G -1 2 nd p Disj p + ˙ -1 z ran F × ran G F -1 1 st p G -1 2 nd p
193 115 191 192 mpsyl φ Disj p + ˙ -1 z ran F × ran G F -1 1 st p G -1 2 nd p
194 193 adantr φ z ran F + ˙ f G 0 K Disj p + ˙ -1 z ran F × ran G F -1 1 st p G -1 2 nd p
195 measvuni M measures dom M p + ˙ -1 z ran F × ran G F -1 1 st p G -1 2 nd p dom M + ˙ -1 z ran F × ran G ω Disj p + ˙ -1 z ran F × ran G F -1 1 st p G -1 2 nd p M p + ˙ -1 z ran F × ran G F -1 1 st p G -1 2 nd p = * p + ˙ -1 z ran F × ran G M F -1 1 st p G -1 2 nd p
196 175 177 178 194 195 syl112anc φ z ran F + ˙ f G 0 K M p + ˙ -1 z ran F × ran G F -1 1 st p G -1 2 nd p = * p + ˙ -1 z ran F × ran G M F -1 1 st p G -1 2 nd p
197 ssfi ran F × ran G Fin + ˙ -1 z ran F × ran G ran F × ran G + ˙ -1 z ran F × ran G Fin
198 114 115 197 sylancl φ + ˙ -1 z ran F × ran G Fin
199 198 adantr φ z ran F + ˙ f G 0 K + ˙ -1 z ran F × ran G Fin
200 simpll φ z ran F + ˙ f G 0 K p + ˙ -1 z ran F × ran G φ
201 simpr φ z ran F + ˙ f G 0 K p + ˙ -1 z ran F × ran G p + ˙ -1 z ran F × ran G
202 115 201 sselid φ z ran F + ˙ f G 0 K p + ˙ -1 z ran F × ran G p ran F × ran G
203 xp1st p ran F × ran G 1 st p ran F
204 202 203 syl φ z ran F + ˙ f G 0 K p + ˙ -1 z ran F × ran G 1 st p ran F
205 xp2nd p ran F × ran G 2 nd p ran G
206 202 205 syl φ z ran F + ˙ f G 0 K p + ˙ -1 z ran F × ran G 2 nd p ran G
207 oveq12 x = 0 ˙ y = 0 ˙ x + ˙ y = 0 ˙ + ˙ 0 ˙
208 207 16 sylan9eqr φ x = 0 ˙ y = 0 ˙ x + ˙ y = 0 K
209 208 ex φ x = 0 ˙ y = 0 ˙ x + ˙ y = 0 K
210 209 necon3ad φ x + ˙ y 0 K ¬ x = 0 ˙ y = 0 ˙
211 neorian x 0 ˙ y 0 ˙ ¬ x = 0 ˙ y = 0 ˙
212 210 211 syl6ibr φ x + ˙ y 0 K x 0 ˙ y 0 ˙
213 212 adantr φ x B y B x + ˙ y 0 K x 0 ˙ y 0 ˙
214 213 ralrimivva φ x B y B x + ˙ y 0 K x 0 ˙ y 0 ˙
215 200 214 syl φ z ran F + ˙ f G 0 K p + ˙ -1 z ran F × ran G x B y B x + ˙ y 0 K x 0 ˙ y 0 ˙
216 69 a1i φ z ran F + ˙ f G 0 K + ˙ -1 z ran F × ran G + ˙ -1 z
217 216 sselda φ z ran F + ˙ f G 0 K p + ˙ -1 z ran F × ran G p + ˙ -1 z
218 fniniseg + ˙ Fn B × B p + ˙ -1 z p B × B + ˙ p = z
219 200 63 218 3syl φ z ran F + ˙ f G 0 K p + ˙ -1 z ran F × ran G p + ˙ -1 z p B × B + ˙ p = z
220 217 219 mpbid φ z ran F + ˙ f G 0 K p + ˙ -1 z ran F × ran G p B × B + ˙ p = z
221 simpr p B × B + ˙ p = z + ˙ p = z
222 1st2nd2 p B × B p = 1 st p 2 nd p
223 222 fveq2d p B × B + ˙ p = + ˙ 1 st p 2 nd p
224 df-ov 1 st p + ˙ 2 nd p = + ˙ 1 st p 2 nd p
225 223 224 eqtr4di p B × B + ˙ p = 1 st p + ˙ 2 nd p
226 225 adantr p B × B + ˙ p = z + ˙ p = 1 st p + ˙ 2 nd p
227 221 226 eqtr3d p B × B + ˙ p = z z = 1 st p + ˙ 2 nd p
228 220 227 syl φ z ran F + ˙ f G 0 K p + ˙ -1 z ran F × ran G z = 1 st p + ˙ 2 nd p
229 simplr φ z ran F + ˙ f G 0 K p + ˙ -1 z ran F × ran G z ran F + ˙ f G 0 K
230 229 eldifbd φ z ran F + ˙ f G 0 K p + ˙ -1 z ran F × ran G ¬ z 0 K
231 velsn z 0 K z = 0 K
232 231 necon3bbii ¬ z 0 K z 0 K
233 230 232 sylib φ z ran F + ˙ f G 0 K p + ˙ -1 z ran F × ran G z 0 K
234 228 233 eqnetrrd φ z ran F + ˙ f G 0 K p + ˙ -1 z ran F × ran G 1 st p + ˙ 2 nd p 0 K
235 176 74 sylanl2 φ z ran F + ˙ f G 0 K p + ˙ -1 z ran F × ran G p B × B
236 235 86 syl φ z ran F + ˙ f G 0 K p + ˙ -1 z ran F × ran G 1 st p B
237 235 99 syl φ z ran F + ˙ f G 0 K p + ˙ -1 z ran F × ran G 2 nd p B
238 oveq1 x = 1 st p x + ˙ y = 1 st p + ˙ y
239 238 neeq1d x = 1 st p x + ˙ y 0 K 1 st p + ˙ y 0 K
240 neeq1 x = 1 st p x 0 ˙ 1 st p 0 ˙
241 240 orbi1d x = 1 st p x 0 ˙ y 0 ˙ 1 st p 0 ˙ y 0 ˙
242 239 241 imbi12d x = 1 st p x + ˙ y 0 K x 0 ˙ y 0 ˙ 1 st p + ˙ y 0 K 1 st p 0 ˙ y 0 ˙
243 oveq2 y = 2 nd p 1 st p + ˙ y = 1 st p + ˙ 2 nd p
244 243 neeq1d y = 2 nd p 1 st p + ˙ y 0 K 1 st p + ˙ 2 nd p 0 K
245 neeq1 y = 2 nd p y 0 ˙ 2 nd p 0 ˙
246 245 orbi2d y = 2 nd p 1 st p 0 ˙ y 0 ˙ 1 st p 0 ˙ 2 nd p 0 ˙
247 244 246 imbi12d y = 2 nd p 1 st p + ˙ y 0 K 1 st p 0 ˙ y 0 ˙ 1 st p + ˙ 2 nd p 0 K 1 st p 0 ˙ 2 nd p 0 ˙
248 242 247 rspc2v 1 st p B 2 nd p B x B y B x + ˙ y 0 K x 0 ˙ y 0 ˙ 1 st p + ˙ 2 nd p 0 K 1 st p 0 ˙ 2 nd p 0 ˙
249 236 237 248 syl2anc φ z ran F + ˙ f G 0 K p + ˙ -1 z ran F × ran G x B y B x + ˙ y 0 K x 0 ˙ y 0 ˙ 1 st p + ˙ 2 nd p 0 K 1 st p 0 ˙ 2 nd p 0 ˙
250 215 234 249 mp2d φ z ran F + ˙ f G 0 K p + ˙ -1 z ran F × ran G 1 st p 0 ˙ 2 nd p 0 ˙
251 1 2 3 4 5 6 7 8 9 13 11 15 sibfinima φ 1 st p ran F 2 nd p ran G 1 st p 0 ˙ 2 nd p 0 ˙ M F -1 1 st p G -1 2 nd p 0 +∞
252 200 204 206 250 251 syl31anc φ z ran F + ˙ f G 0 K p + ˙ -1 z ran F × ran G M F -1 1 st p G -1 2 nd p 0 +∞
253 199 252 esumpfinval φ z ran F + ˙ f G 0 K * p + ˙ -1 z ran F × ran G M F -1 1 st p G -1 2 nd p = p + ˙ -1 z ran F × ran G M F -1 1 st p G -1 2 nd p
254 172 196 253 3eqtrd φ z ran F + ˙ f G 0 K M F + ˙ f G -1 z = p + ˙ -1 z ran F × ran G M F -1 1 st p G -1 2 nd p
255 rge0ssre 0 +∞
256 255 252 sselid φ z ran F + ˙ f G 0 K p + ˙ -1 z ran F × ran G M F -1 1 st p G -1 2 nd p
257 199 256 fsumrecl φ z ran F + ˙ f G 0 K p + ˙ -1 z ran F × ran G M F -1 1 st p G -1 2 nd p
258 254 257 eqeltrd φ z ran F + ˙ f G 0 K M F + ˙ f G -1 z
259 175 adantr φ z ran F + ˙ f G 0 K p + ˙ -1 z ran F × ran G M measures dom M
260 176 109 sylanl2 φ z ran F + ˙ f G 0 K p + ˙ -1 z ran F × ran G F -1 1 st p G -1 2 nd p dom M
261 measge0 M measures dom M F -1 1 st p G -1 2 nd p dom M 0 M F -1 1 st p G -1 2 nd p
262 259 260 261 syl2anc φ z ran F + ˙ f G 0 K p + ˙ -1 z ran F × ran G 0 M F -1 1 st p G -1 2 nd p
263 199 256 262 fsumge0 φ z ran F + ˙ f G 0 K 0 p + ˙ -1 z ran F × ran G M F -1 1 st p G -1 2 nd p
264 263 254 breqtrrd φ z ran F + ˙ f G 0 K 0 M F + ˙ f G -1 z
265 elrege0 M F + ˙ f G -1 z 0 +∞ M F + ˙ f G -1 z 0 M F + ˙ f G -1 z
266 258 264 265 sylanbrc φ z ran F + ˙ f G 0 K M F + ˙ f G -1 z 0 +∞
267 266 ralrimiva φ z ran F + ˙ f G 0 K M F + ˙ f G -1 z 0 +∞
268 eqid 𝛔 TopOpen K = 𝛔 TopOpen K
269 eqid 0 K = 0 K
270 eqid K = K
271 eqid ℝHom Scalar K = ℝHom Scalar K
272 10 30 268 269 270 271 14 8 issibf φ F + ˙ f G M K F + ˙ f G dom M MblFn μ 𝛔 TopOpen K ran F + ˙ f G Fin z ran F + ˙ f G 0 K M F + ˙ f G -1 z 0 +∞
273 170 138 267 272 mpbir3and φ F + ˙ f G M K