Metamath Proof Explorer


Theorem sibfof

Description: Applying function operations on simple functions results in simple functions with regard to the destination space, provided the operation fulfills a simple condition. (Contributed by Thierry Arnoux, 12-Mar-2018)

Ref Expression
Hypotheses sitgval.b โŠขB=BaseW
sitgval.j โŠขJ=TopOpenโกW
sitgval.s โŠขS=๐›”โกJ
sitgval.0 โŠข0ห™=0W
sitgval.x โŠขยทห™=โ‹…W
sitgval.h โŠขH=โ„HomโกScalarโกW
sitgval.1 โŠขฯ†โ†’WโˆˆV
sitgval.2 โŠขฯ†โ†’Mโˆˆโ‹ƒranโกmeasures
sibfmbl.1 โŠขฯ†โ†’Fโˆˆโ„‘MW
sibfof.c โŠขC=BaseK
sibfof.0 โŠขฯ†โ†’WโˆˆTopSp
sibfof.1 โŠขฯ†โ†’+ห™:Bร—BโŸถC
sibfof.2 โŠขฯ†โ†’Gโˆˆโ„‘MW
sibfof.3 โŠขฯ†โ†’KโˆˆTopSp
sibfof.4 โŠขฯ†โ†’JโˆˆFre
sibfof.5 โŠขฯ†โ†’0ห™+ห™0ห™=0K
Assertion sibfof โŠขฯ†โ†’F+ห™fGโˆˆโ„‘MK

Proof

Step Hyp Ref Expression
1 sitgval.b โŠขB=BaseW
2 sitgval.j โŠขJ=TopOpenโกW
3 sitgval.s โŠขS=๐›”โกJ
4 sitgval.0 โŠข0ห™=0W
5 sitgval.x โŠขยทห™=โ‹…W
6 sitgval.h โŠขH=โ„HomโกScalarโกW
7 sitgval.1 โŠขฯ†โ†’WโˆˆV
8 sitgval.2 โŠขฯ†โ†’Mโˆˆโ‹ƒranโกmeasures
9 sibfmbl.1 โŠขฯ†โ†’Fโˆˆโ„‘MW
10 sibfof.c โŠขC=BaseK
11 sibfof.0 โŠขฯ†โ†’WโˆˆTopSp
12 sibfof.1 โŠขฯ†โ†’+ห™:Bร—BโŸถC
13 sibfof.2 โŠขฯ†โ†’Gโˆˆโ„‘MW
14 sibfof.3 โŠขฯ†โ†’KโˆˆTopSp
15 sibfof.4 โŠขฯ†โ†’JโˆˆFre
16 sibfof.5 โŠขฯ†โ†’0ห™+ห™0ห™=0K
17 1 2 tpsuni โŠขWโˆˆTopSpโ†’B=โ‹ƒJ
18 11 17 syl โŠขฯ†โ†’B=โ‹ƒJ
19 18 sqxpeqd โŠขฯ†โ†’Bร—B=โ‹ƒJร—โ‹ƒJ
20 19 feq2d โŠขฯ†โ†’+ห™:Bร—BโŸถCโ†”+ห™:โ‹ƒJร—โ‹ƒJโŸถC
21 12 20 mpbid โŠขฯ†โ†’+ห™:โ‹ƒJร—โ‹ƒJโŸถC
22 21 fovcdmda โŠขฯ†โˆงzโˆˆโ‹ƒJโˆงxโˆˆโ‹ƒJโ†’z+ห™xโˆˆC
23 1 2 3 4 5 6 7 8 9 sibff โŠขฯ†โ†’F:โ‹ƒdomโกMโŸถโ‹ƒJ
24 1 2 3 4 5 6 7 8 13 sibff โŠขฯ†โ†’G:โ‹ƒdomโกMโŸถโ‹ƒJ
25 dmexg โŠขMโˆˆโ‹ƒranโกmeasuresโ†’domโกMโˆˆV
26 uniexg โŠขdomโกMโˆˆVโ†’โ‹ƒdomโกMโˆˆV
27 8 25 26 3syl โŠขฯ†โ†’โ‹ƒdomโกMโˆˆV
28 inidm โŠขโ‹ƒdomโกMโˆฉโ‹ƒdomโกM=โ‹ƒdomโกM
29 22 23 24 27 27 28 off โŠขฯ†โ†’F+ห™fG:โ‹ƒdomโกMโŸถC
30 eqid โŠขTopOpenโกK=TopOpenโกK
31 10 30 tpsuni โŠขKโˆˆTopSpโ†’C=โ‹ƒTopOpenโกK
32 14 31 syl โŠขฯ†โ†’C=โ‹ƒTopOpenโกK
33 fvex โŠขTopOpenโกKโˆˆV
34 unisg โŠขTopOpenโกKโˆˆVโ†’โ‹ƒ๐›”โกTopOpenโกK=โ‹ƒTopOpenโกK
35 33 34 ax-mp โŠขโ‹ƒ๐›”โกTopOpenโกK=โ‹ƒTopOpenโกK
36 32 35 eqtr4di โŠขฯ†โ†’C=โ‹ƒ๐›”โกTopOpenโกK
37 36 feq3d โŠขฯ†โ†’F+ห™fG:โ‹ƒdomโกMโŸถCโ†”F+ห™fG:โ‹ƒdomโกMโŸถโ‹ƒ๐›”โกTopOpenโกK
38 29 37 mpbid โŠขฯ†โ†’F+ห™fG:โ‹ƒdomโกMโŸถโ‹ƒ๐›”โกTopOpenโกK
39 33 a1i โŠขฯ†โ†’TopOpenโกKโˆˆV
40 39 sgsiga โŠขฯ†โ†’๐›”โกTopOpenโกKโˆˆโ‹ƒranโกsigAlgebra
41 40 uniexd โŠขฯ†โ†’โ‹ƒ๐›”โกTopOpenโกKโˆˆV
42 41 27 elmapd โŠขฯ†โ†’F+ห™fGโˆˆโ‹ƒ๐›”โกTopOpenโกKโ‹ƒdomโกMโ†”F+ห™fG:โ‹ƒdomโกMโŸถโ‹ƒ๐›”โกTopOpenโกK
43 38 42 mpbird โŠขฯ†โ†’F+ห™fGโˆˆโ‹ƒ๐›”โกTopOpenโกKโ‹ƒdomโกM
44 inundif โŠขbโˆฉranโกF+ห™fGโˆชbโˆ–ranโกF+ห™fG=b
45 44 imaeq2i โŠขF+ห™fG-1bโˆฉranโกF+ห™fGโˆชbโˆ–ranโกF+ห™fG=F+ห™fG-1b
46 ffun โŠขF+ห™fG:โ‹ƒdomโกMโŸถCโ†’FunโกF+ห™fG
47 unpreima โŠขFunโกF+ห™fGโ†’F+ห™fG-1bโˆฉranโกF+ห™fGโˆชbโˆ–ranโกF+ห™fG=F+ห™fG-1bโˆฉranโกF+ห™fGโˆชF+ห™fG-1bโˆ–ranโกF+ห™fG
48 29 46 47 3syl โŠขฯ†โ†’F+ห™fG-1bโˆฉranโกF+ห™fGโˆชbโˆ–ranโกF+ห™fG=F+ห™fG-1bโˆฉranโกF+ห™fGโˆชF+ห™fG-1bโˆ–ranโกF+ห™fG
49 48 adantr โŠขฯ†โˆงbโˆˆ๐›”โกTopOpenโกKโ†’F+ห™fG-1bโˆฉranโกF+ห™fGโˆชbโˆ–ranโกF+ห™fG=F+ห™fG-1bโˆฉranโกF+ห™fGโˆชF+ห™fG-1bโˆ–ranโกF+ห™fG
50 45 49 eqtr3id โŠขฯ†โˆงbโˆˆ๐›”โกTopOpenโกKโ†’F+ห™fG-1b=F+ห™fG-1bโˆฉranโกF+ห™fGโˆชF+ห™fG-1bโˆ–ranโกF+ห™fG
51 dmmeas โŠขMโˆˆโ‹ƒranโกmeasuresโ†’domโกMโˆˆโ‹ƒranโกsigAlgebra
52 8 51 syl โŠขฯ†โ†’domโกMโˆˆโ‹ƒranโกsigAlgebra
53 52 adantr โŠขฯ†โˆงbโˆˆ๐›”โกTopOpenโกKโ†’domโกMโˆˆโ‹ƒranโกsigAlgebra
54 imaiun โŠขF+ห™fG-1โ‹ƒzโˆˆbโˆฉranโกF+ห™fGz=โ‹ƒzโˆˆbโˆฉranโกF+ห™fGF+ห™fG-1z
55 iunid โŠขโ‹ƒzโˆˆbโˆฉranโกF+ห™fGz=bโˆฉranโกF+ห™fG
56 55 imaeq2i โŠขF+ห™fG-1โ‹ƒzโˆˆbโˆฉranโกF+ห™fGz=F+ห™fG-1bโˆฉranโกF+ห™fG
57 54 56 eqtr3i โŠขโ‹ƒzโˆˆbโˆฉranโกF+ห™fGF+ห™fG-1z=F+ห™fG-1bโˆฉranโกF+ห™fG
58 inss2 โŠขbโˆฉranโกF+ห™fGโŠ†ranโกF+ห™fG
59 18 feq3d โŠขฯ†โ†’F:โ‹ƒdomโกMโŸถBโ†”F:โ‹ƒdomโกMโŸถโ‹ƒJ
60 23 59 mpbird โŠขฯ†โ†’F:โ‹ƒdomโกMโŸถB
61 18 feq3d โŠขฯ†โ†’G:โ‹ƒdomโกMโŸถBโ†”G:โ‹ƒdomโกMโŸถโ‹ƒJ
62 24 61 mpbird โŠขฯ†โ†’G:โ‹ƒdomโกMโŸถB
63 12 ffnd โŠขฯ†โ†’+ห™FnBร—B
64 60 62 27 63 ofpreima2 โŠขฯ†โ†’F+ห™fG-1z=โ‹ƒpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGF-11stโกpโˆฉG-12ndโกp
65 64 adantr โŠขฯ†โˆงzโˆˆranโกF+ห™fGโ†’F+ห™fG-1z=โ‹ƒpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGF-11stโกpโˆฉG-12ndโกp
66 52 adantr โŠขฯ†โˆงzโˆˆranโกF+ห™fGโ†’domโกMโˆˆโ‹ƒranโกsigAlgebra
67 52 ad2antrr โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆงpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGโ†’domโกMโˆˆโ‹ƒranโกsigAlgebra
68 simpll โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆงpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGโ†’ฯ†
69 inss1 โŠข+ห™-1zโˆฉranโกFร—ranโกGโŠ†+ห™-1z
70 cnvimass โŠข+ห™-1zโŠ†domโก+ห™
71 70 12 fssdm โŠขฯ†โ†’+ห™-1zโŠ†Bร—B
72 71 adantr โŠขฯ†โˆงzโˆˆranโกF+ห™fGโ†’+ห™-1zโŠ†Bร—B
73 69 72 sstrid โŠขฯ†โˆงzโˆˆranโกF+ห™fGโ†’+ห™-1zโˆฉranโกFร—ranโกGโŠ†Bร—B
74 73 sselda โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆงpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGโ†’pโˆˆBร—B
75 52 adantr โŠขฯ†โˆงpโˆˆBร—Bโ†’domโกMโˆˆโ‹ƒranโกsigAlgebra
76 15 sgsiga โŠขฯ†โ†’๐›”โกJโˆˆโ‹ƒranโกsigAlgebra
77 3 76 eqeltrid โŠขฯ†โ†’Sโˆˆโ‹ƒranโกsigAlgebra
78 77 adantr โŠขฯ†โˆงpโˆˆBร—Bโ†’Sโˆˆโ‹ƒranโกsigAlgebra
79 1 2 3 4 5 6 7 8 9 sibfmbl โŠขฯ†โ†’FโˆˆdomโกMMblFnฮผS
80 79 adantr โŠขฯ†โˆงpโˆˆBร—Bโ†’FโˆˆdomโกMMblFnฮผS
81 2 tpstop โŠขWโˆˆTopSpโ†’JโˆˆTop
82 cldssbrsiga โŠขJโˆˆTopโ†’ClsdโกJโŠ†๐›”โกJ
83 11 81 82 3syl โŠขฯ†โ†’ClsdโกJโŠ†๐›”โกJ
84 83 adantr โŠขฯ†โˆงpโˆˆBร—Bโ†’ClsdโกJโŠ†๐›”โกJ
85 15 adantr โŠขฯ†โˆงpโˆˆBร—Bโ†’JโˆˆFre
86 xp1st โŠขpโˆˆBร—Bโ†’1stโกpโˆˆB
87 86 adantl โŠขฯ†โˆงpโˆˆBร—Bโ†’1stโกpโˆˆB
88 18 adantr โŠขฯ†โˆงpโˆˆBร—Bโ†’B=โ‹ƒJ
89 87 88 eleqtrd โŠขฯ†โˆงpโˆˆBร—Bโ†’1stโกpโˆˆโ‹ƒJ
90 eqid โŠขโ‹ƒJ=โ‹ƒJ
91 90 t1sncld โŠขJโˆˆFreโˆง1stโกpโˆˆโ‹ƒJโ†’1stโกpโˆˆClsdโกJ
92 85 89 91 syl2anc โŠขฯ†โˆงpโˆˆBร—Bโ†’1stโกpโˆˆClsdโกJ
93 84 92 sseldd โŠขฯ†โˆงpโˆˆBร—Bโ†’1stโกpโˆˆ๐›”โกJ
94 93 3 eleqtrrdi โŠขฯ†โˆงpโˆˆBร—Bโ†’1stโกpโˆˆS
95 75 78 80 94 mbfmcnvima โŠขฯ†โˆงpโˆˆBร—Bโ†’F-11stโกpโˆˆdomโกM
96 68 74 95 syl2anc โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆงpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGโ†’F-11stโกpโˆˆdomโกM
97 1 2 3 4 5 6 7 8 13 sibfmbl โŠขฯ†โ†’GโˆˆdomโกMMblFnฮผS
98 97 adantr โŠขฯ†โˆงpโˆˆBร—Bโ†’GโˆˆdomโกMMblFnฮผS
99 xp2nd โŠขpโˆˆBร—Bโ†’2ndโกpโˆˆB
100 99 adantl โŠขฯ†โˆงpโˆˆBร—Bโ†’2ndโกpโˆˆB
101 100 88 eleqtrd โŠขฯ†โˆงpโˆˆBร—Bโ†’2ndโกpโˆˆโ‹ƒJ
102 90 t1sncld โŠขJโˆˆFreโˆง2ndโกpโˆˆโ‹ƒJโ†’2ndโกpโˆˆClsdโกJ
103 85 101 102 syl2anc โŠขฯ†โˆงpโˆˆBร—Bโ†’2ndโกpโˆˆClsdโกJ
104 84 103 sseldd โŠขฯ†โˆงpโˆˆBร—Bโ†’2ndโกpโˆˆ๐›”โกJ
105 104 3 eleqtrrdi โŠขฯ†โˆงpโˆˆBร—Bโ†’2ndโกpโˆˆS
106 75 78 98 105 mbfmcnvima โŠขฯ†โˆงpโˆˆBร—Bโ†’G-12ndโกpโˆˆdomโกM
107 68 74 106 syl2anc โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆงpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGโ†’G-12ndโกpโˆˆdomโกM
108 inelsiga โŠขdomโกMโˆˆโ‹ƒranโกsigAlgebraโˆงF-11stโกpโˆˆdomโกMโˆงG-12ndโกpโˆˆdomโกMโ†’F-11stโกpโˆฉG-12ndโกpโˆˆdomโกM
109 67 96 107 108 syl3anc โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆงpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGโ†’F-11stโกpโˆฉG-12ndโกpโˆˆdomโกM
110 109 ralrimiva โŠขฯ†โˆงzโˆˆranโกF+ห™fGโ†’โˆ€pโˆˆ+ห™-1zโˆฉranโกFร—ranโกGF-11stโกpโˆฉG-12ndโกpโˆˆdomโกM
111 1 2 3 4 5 6 7 8 9 sibfrn โŠขฯ†โ†’ranโกFโˆˆFin
112 1 2 3 4 5 6 7 8 13 sibfrn โŠขฯ†โ†’ranโกGโˆˆFin
113 xpfi โŠขranโกFโˆˆFinโˆงranโกGโˆˆFinโ†’ranโกFร—ranโกGโˆˆFin
114 111 112 113 syl2anc โŠขฯ†โ†’ranโกFร—ranโกGโˆˆFin
115 inss2 โŠข+ห™-1zโˆฉranโกFร—ranโกGโŠ†ranโกFร—ranโกG
116 ssdomg โŠขranโกFร—ranโกGโˆˆFinโ†’+ห™-1zโˆฉranโกFร—ranโกGโŠ†ranโกFร—ranโกGโ†’+ห™-1zโˆฉranโกFร—ranโกGโ‰ผranโกFร—ranโกG
117 114 115 116 mpisyl โŠขฯ†โ†’+ห™-1zโˆฉranโกFร—ranโกGโ‰ผranโกFร—ranโกG
118 isfinite โŠขranโกFร—ranโกGโˆˆFinโ†”ranโกFร—ranโกGโ‰บฯ‰
119 118 biimpi โŠขranโกFร—ranโกGโˆˆFinโ†’ranโกFร—ranโกGโ‰บฯ‰
120 sdomdom โŠขranโกFร—ranโกGโ‰บฯ‰โ†’ranโกFร—ranโกGโ‰ผฯ‰
121 114 119 120 3syl โŠขฯ†โ†’ranโกFร—ranโกGโ‰ผฯ‰
122 domtr โŠข+ห™-1zโˆฉranโกFร—ranโกGโ‰ผranโกFร—ranโกGโˆงranโกFร—ranโกGโ‰ผฯ‰โ†’+ห™-1zโˆฉranโกFร—ranโกGโ‰ผฯ‰
123 117 121 122 syl2anc โŠขฯ†โ†’+ห™-1zโˆฉranโกFร—ranโกGโ‰ผฯ‰
124 123 adantr โŠขฯ†โˆงzโˆˆranโกF+ห™fGโ†’+ห™-1zโˆฉranโกFร—ranโกGโ‰ผฯ‰
125 nfcv โŠขโ„ฒ_p+ห™-1zโˆฉranโกFร—ranโกG
126 125 sigaclcuni โŠขdomโกMโˆˆโ‹ƒranโกsigAlgebraโˆงโˆ€pโˆˆ+ห™-1zโˆฉranโกFร—ranโกGF-11stโกpโˆฉG-12ndโกpโˆˆdomโกMโˆง+ห™-1zโˆฉranโกFร—ranโกGโ‰ผฯ‰โ†’โ‹ƒpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGF-11stโกpโˆฉG-12ndโกpโˆˆdomโกM
127 66 110 124 126 syl3anc โŠขฯ†โˆงzโˆˆranโกF+ห™fGโ†’โ‹ƒpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGF-11stโกpโˆฉG-12ndโกpโˆˆdomโกM
128 65 127 eqeltrd โŠขฯ†โˆงzโˆˆranโกF+ห™fGโ†’F+ห™fG-1zโˆˆdomโกM
129 128 ralrimiva โŠขฯ†โ†’โˆ€zโˆˆranโกF+ห™fGF+ห™fG-1zโˆˆdomโกM
130 ssralv โŠขbโˆฉranโกF+ห™fGโŠ†ranโกF+ห™fGโ†’โˆ€zโˆˆranโกF+ห™fGF+ห™fG-1zโˆˆdomโกMโ†’โˆ€zโˆˆbโˆฉranโกF+ห™fGF+ห™fG-1zโˆˆdomโกM
131 58 129 130 mpsyl โŠขฯ†โ†’โˆ€zโˆˆbโˆฉranโกF+ห™fGF+ห™fG-1zโˆˆdomโกM
132 131 adantr โŠขฯ†โˆงbโˆˆ๐›”โกTopOpenโกKโ†’โˆ€zโˆˆbโˆฉranโกF+ห™fGF+ห™fG-1zโˆˆdomโกM
133 12 ffund โŠขฯ†โ†’Funโก+ห™
134 imafi โŠขFunโก+ห™โˆงranโกFร—ranโกGโˆˆFinโ†’+ห™ranโกFร—ranโกGโˆˆFin
135 133 114 134 syl2anc โŠขฯ†โ†’+ห™ranโกFร—ranโกGโˆˆFin
136 23 24 21 27 ofrn2 โŠขฯ†โ†’ranโกF+ห™fGโŠ†+ห™ranโกFร—ranโกG
137 ssfi โŠข+ห™ranโกFร—ranโกGโˆˆFinโˆงranโกF+ห™fGโŠ†+ห™ranโกFร—ranโกGโ†’ranโกF+ห™fGโˆˆFin
138 135 136 137 syl2anc โŠขฯ†โ†’ranโกF+ห™fGโˆˆFin
139 ssdomg โŠขranโกF+ห™fGโˆˆFinโ†’bโˆฉranโกF+ห™fGโŠ†ranโกF+ห™fGโ†’bโˆฉranโกF+ห™fGโ‰ผranโกF+ห™fG
140 138 58 139 mpisyl โŠขฯ†โ†’bโˆฉranโกF+ห™fGโ‰ผranโกF+ห™fG
141 isfinite โŠขranโกF+ห™fGโˆˆFinโ†”ranโกF+ห™fGโ‰บฯ‰
142 138 141 sylib โŠขฯ†โ†’ranโกF+ห™fGโ‰บฯ‰
143 sdomdom โŠขranโกF+ห™fGโ‰บฯ‰โ†’ranโกF+ห™fGโ‰ผฯ‰
144 142 143 syl โŠขฯ†โ†’ranโกF+ห™fGโ‰ผฯ‰
145 domtr โŠขbโˆฉranโกF+ห™fGโ‰ผranโกF+ห™fGโˆงranโกF+ห™fGโ‰ผฯ‰โ†’bโˆฉranโกF+ห™fGโ‰ผฯ‰
146 140 144 145 syl2anc โŠขฯ†โ†’bโˆฉranโกF+ห™fGโ‰ผฯ‰
147 146 adantr โŠขฯ†โˆงbโˆˆ๐›”โกTopOpenโกKโ†’bโˆฉranโกF+ห™fGโ‰ผฯ‰
148 nfcv โŠขโ„ฒ_zbโˆฉranโกF+ห™fG
149 148 sigaclcuni โŠขdomโกMโˆˆโ‹ƒranโกsigAlgebraโˆงโˆ€zโˆˆbโˆฉranโกF+ห™fGF+ห™fG-1zโˆˆdomโกMโˆงbโˆฉranโกF+ห™fGโ‰ผฯ‰โ†’โ‹ƒzโˆˆbโˆฉranโกF+ห™fGF+ห™fG-1zโˆˆdomโกM
150 53 132 147 149 syl3anc โŠขฯ†โˆงbโˆˆ๐›”โกTopOpenโกKโ†’โ‹ƒzโˆˆbโˆฉranโกF+ห™fGF+ห™fG-1zโˆˆdomโกM
151 57 150 eqeltrrid โŠขฯ†โˆงbโˆˆ๐›”โกTopOpenโกKโ†’F+ห™fG-1bโˆฉranโกF+ห™fGโˆˆdomโกM
152 difpreima โŠขFunโกF+ห™fGโ†’F+ห™fG-1bโˆ–ranโกF+ห™fG=F+ห™fG-1bโˆ–F+ห™fG-1ranโกF+ห™fG
153 29 46 152 3syl โŠขฯ†โ†’F+ห™fG-1bโˆ–ranโกF+ห™fG=F+ห™fG-1bโˆ–F+ห™fG-1ranโกF+ห™fG
154 cnvimarndm โŠขF+ห™fG-1ranโกF+ห™fG=domโกF+ห™fG
155 154 difeq2i โŠขF+ห™fG-1bโˆ–F+ห™fG-1ranโกF+ห™fG=F+ห™fG-1bโˆ–domโกF+ห™fG
156 cnvimass โŠขF+ห™fG-1bโŠ†domโกF+ห™fG
157 ssdif0 โŠขF+ห™fG-1bโŠ†domโกF+ห™fGโ†”F+ห™fG-1bโˆ–domโกF+ห™fG=โˆ…
158 156 157 mpbi โŠขF+ห™fG-1bโˆ–domโกF+ห™fG=โˆ…
159 155 158 eqtri โŠขF+ห™fG-1bโˆ–F+ห™fG-1ranโกF+ห™fG=โˆ…
160 153 159 eqtrdi โŠขฯ†โ†’F+ห™fG-1bโˆ–ranโกF+ห™fG=โˆ…
161 0elsiga โŠขdomโกMโˆˆโ‹ƒranโกsigAlgebraโ†’โˆ…โˆˆdomโกM
162 8 51 161 3syl โŠขฯ†โ†’โˆ…โˆˆdomโกM
163 160 162 eqeltrd โŠขฯ†โ†’F+ห™fG-1bโˆ–ranโกF+ห™fGโˆˆdomโกM
164 163 adantr โŠขฯ†โˆงbโˆˆ๐›”โกTopOpenโกKโ†’F+ห™fG-1bโˆ–ranโกF+ห™fGโˆˆdomโกM
165 unelsiga โŠขdomโกMโˆˆโ‹ƒranโกsigAlgebraโˆงF+ห™fG-1bโˆฉranโกF+ห™fGโˆˆdomโกMโˆงF+ห™fG-1bโˆ–ranโกF+ห™fGโˆˆdomโกMโ†’F+ห™fG-1bโˆฉranโกF+ห™fGโˆชF+ห™fG-1bโˆ–ranโกF+ห™fGโˆˆdomโกM
166 53 151 164 165 syl3anc โŠขฯ†โˆงbโˆˆ๐›”โกTopOpenโกKโ†’F+ห™fG-1bโˆฉranโกF+ห™fGโˆชF+ห™fG-1bโˆ–ranโกF+ห™fGโˆˆdomโกM
167 50 166 eqeltrd โŠขฯ†โˆงbโˆˆ๐›”โกTopOpenโกKโ†’F+ห™fG-1bโˆˆdomโกM
168 167 ralrimiva โŠขฯ†โ†’โˆ€bโˆˆ๐›”โกTopOpenโกKF+ห™fG-1bโˆˆdomโกM
169 52 40 ismbfm โŠขฯ†โ†’F+ห™fGโˆˆdomโกMMblFnฮผ๐›”โกTopOpenโกKโ†”F+ห™fGโˆˆโ‹ƒ๐›”โกTopOpenโกKโ‹ƒdomโกMโˆงโˆ€bโˆˆ๐›”โกTopOpenโกKF+ห™fG-1bโˆˆdomโกM
170 43 168 169 mpbir2and โŠขฯ†โ†’F+ห™fGโˆˆdomโกMMblFnฮผ๐›”โกTopOpenโกK
171 64 adantr โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโ†’F+ห™fG-1z=โ‹ƒpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGF-11stโกpโˆฉG-12ndโกp
172 171 fveq2d โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโ†’MโกF+ห™fG-1z=Mโกโ‹ƒpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGF-11stโกpโˆฉG-12ndโกp
173 measbasedom โŠขMโˆˆโ‹ƒranโกmeasuresโ†”MโˆˆmeasuresโกdomโกM
174 8 173 sylib โŠขฯ†โ†’MโˆˆmeasuresโกdomโกM
175 174 adantr โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโ†’MโˆˆmeasuresโกdomโกM
176 eldifi โŠขzโˆˆranโกF+ห™fGโˆ–0Kโ†’zโˆˆranโกF+ห™fG
177 176 110 sylan2 โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโ†’โˆ€pโˆˆ+ห™-1zโˆฉranโกFร—ranโกGF-11stโกpโˆฉG-12ndโกpโˆˆdomโกM
178 123 adantr โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโ†’+ห™-1zโˆฉranโกFร—ranโกGโ‰ผฯ‰
179 sneq โŠขx=1stโกpโ†’x=1stโกp
180 179 imaeq2d โŠขx=1stโกpโ†’F-1x=F-11stโกp
181 sneq โŠขy=2ndโกpโ†’y=2ndโกp
182 181 imaeq2d โŠขy=2ndโกpโ†’G-1y=G-12ndโกp
183 23 ffund โŠขฯ†โ†’FunโกF
184 sndisj โŠขDisjxโˆˆranโกFx
185 disjpreima โŠขFunโกFโˆงDisjxโˆˆranโกFxโ†’DisjxโˆˆranโกFF-1x
186 183 184 185 sylancl โŠขฯ†โ†’DisjxโˆˆranโกFF-1x
187 24 ffund โŠขฯ†โ†’FunโกG
188 sndisj โŠขDisjyโˆˆranโกGy
189 disjpreima โŠขFunโกGโˆงDisjyโˆˆranโกGyโ†’DisjyโˆˆranโกGG-1y
190 187 188 189 sylancl โŠขฯ†โ†’DisjyโˆˆranโกGG-1y
191 180 182 186 190 disjxpin โŠขฯ†โ†’DisjpโˆˆranโกFร—ranโกGF-11stโกpโˆฉG-12ndโกp
192 disjss1 โŠข+ห™-1zโˆฉranโกFร—ranโกGโŠ†ranโกFร—ranโกGโ†’DisjpโˆˆranโกFร—ranโกGF-11stโกpโˆฉG-12ndโกpโ†’Disjpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGF-11stโกpโˆฉG-12ndโกp
193 115 191 192 mpsyl โŠขฯ†โ†’Disjpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGF-11stโกpโˆฉG-12ndโกp
194 193 adantr โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโ†’Disjpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGF-11stโกpโˆฉG-12ndโกp
195 measvuni โŠขMโˆˆmeasuresโกdomโกMโˆงโˆ€pโˆˆ+ห™-1zโˆฉranโกFร—ranโกGF-11stโกpโˆฉG-12ndโกpโˆˆdomโกMโˆง+ห™-1zโˆฉranโกFร—ranโกGโ‰ผฯ‰โˆงDisjpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGF-11stโกpโˆฉG-12ndโกpโ†’Mโกโ‹ƒpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGF-11stโกpโˆฉG-12ndโกp=โˆ‘*pโˆˆ+ห™-1zโˆฉranโกFร—ranโกGMโกF-11stโกpโˆฉG-12ndโกp
196 175 177 178 194 195 syl112anc โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโ†’Mโกโ‹ƒpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGF-11stโกpโˆฉG-12ndโกp=โˆ‘*pโˆˆ+ห™-1zโˆฉranโกFร—ranโกGMโกF-11stโกpโˆฉG-12ndโกp
197 ssfi โŠขranโกFร—ranโกGโˆˆFinโˆง+ห™-1zโˆฉranโกFร—ranโกGโŠ†ranโกFร—ranโกGโ†’+ห™-1zโˆฉranโกFร—ranโกGโˆˆFin
198 114 115 197 sylancl โŠขฯ†โ†’+ห™-1zโˆฉranโกFร—ranโกGโˆˆFin
199 198 adantr โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโ†’+ห™-1zโˆฉranโกFร—ranโกGโˆˆFin
200 simpll โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโˆงpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGโ†’ฯ†
201 simpr โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโˆงpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGโ†’pโˆˆ+ห™-1zโˆฉranโกFร—ranโกG
202 115 201 sselid โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโˆงpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGโ†’pโˆˆranโกFร—ranโกG
203 xp1st โŠขpโˆˆranโกFร—ranโกGโ†’1stโกpโˆˆranโกF
204 202 203 syl โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโˆงpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGโ†’1stโกpโˆˆranโกF
205 xp2nd โŠขpโˆˆranโกFร—ranโกGโ†’2ndโกpโˆˆranโกG
206 202 205 syl โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโˆงpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGโ†’2ndโกpโˆˆranโกG
207 oveq12 โŠขx=0ห™โˆงy=0ห™โ†’x+ห™y=0ห™+ห™0ห™
208 207 16 sylan9eqr โŠขฯ†โˆงx=0ห™โˆงy=0ห™โ†’x+ห™y=0K
209 208 ex โŠขฯ†โ†’x=0ห™โˆงy=0ห™โ†’x+ห™y=0K
210 209 necon3ad โŠขฯ†โ†’x+ห™yโ‰ 0Kโ†’ยฌx=0ห™โˆงy=0ห™
211 neorian โŠขxโ‰ 0ห™โˆจyโ‰ 0ห™โ†”ยฌx=0ห™โˆงy=0ห™
212 210 211 syl6ibr โŠขฯ†โ†’x+ห™yโ‰ 0Kโ†’xโ‰ 0ห™โˆจyโ‰ 0ห™
213 212 adantr โŠขฯ†โˆงxโˆˆBโˆงyโˆˆBโ†’x+ห™yโ‰ 0Kโ†’xโ‰ 0ห™โˆจyโ‰ 0ห™
214 213 ralrimivva โŠขฯ†โ†’โˆ€xโˆˆBโˆ€yโˆˆBx+ห™yโ‰ 0Kโ†’xโ‰ 0ห™โˆจyโ‰ 0ห™
215 200 214 syl โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโˆงpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGโ†’โˆ€xโˆˆBโˆ€yโˆˆBx+ห™yโ‰ 0Kโ†’xโ‰ 0ห™โˆจyโ‰ 0ห™
216 69 a1i โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโ†’+ห™-1zโˆฉranโกFร—ranโกGโŠ†+ห™-1z
217 216 sselda โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโˆงpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGโ†’pโˆˆ+ห™-1z
218 fniniseg โŠข+ห™FnBร—Bโ†’pโˆˆ+ห™-1zโ†”pโˆˆBร—Bโˆง+ห™โกp=z
219 200 63 218 3syl โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโˆงpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGโ†’pโˆˆ+ห™-1zโ†”pโˆˆBร—Bโˆง+ห™โกp=z
220 217 219 mpbid โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโˆงpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGโ†’pโˆˆBร—Bโˆง+ห™โกp=z
221 simpr โŠขpโˆˆBร—Bโˆง+ห™โกp=zโ†’+ห™โกp=z
222 1st2nd2 โŠขpโˆˆBร—Bโ†’p=1stโกp2ndโกp
223 222 fveq2d โŠขpโˆˆBร—Bโ†’+ห™โกp=+ห™โก1stโกp2ndโกp
224 df-ov โŠข1stโกp+ห™2ndโกp=+ห™โก1stโกp2ndโกp
225 223 224 eqtr4di โŠขpโˆˆBร—Bโ†’+ห™โกp=1stโกp+ห™2ndโกp
226 225 adantr โŠขpโˆˆBร—Bโˆง+ห™โกp=zโ†’+ห™โกp=1stโกp+ห™2ndโกp
227 221 226 eqtr3d โŠขpโˆˆBร—Bโˆง+ห™โกp=zโ†’z=1stโกp+ห™2ndโกp
228 220 227 syl โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโˆงpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGโ†’z=1stโกp+ห™2ndโกp
229 simplr โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโˆงpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGโ†’zโˆˆranโกF+ห™fGโˆ–0K
230 229 eldifbd โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโˆงpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGโ†’ยฌzโˆˆ0K
231 velsn โŠขzโˆˆ0Kโ†”z=0K
232 231 necon3bbii โŠขยฌzโˆˆ0Kโ†”zโ‰ 0K
233 230 232 sylib โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโˆงpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGโ†’zโ‰ 0K
234 228 233 eqnetrrd โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโˆงpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGโ†’1stโกp+ห™2ndโกpโ‰ 0K
235 176 74 sylanl2 โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโˆงpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGโ†’pโˆˆBร—B
236 235 86 syl โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโˆงpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGโ†’1stโกpโˆˆB
237 235 99 syl โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโˆงpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGโ†’2ndโกpโˆˆB
238 oveq1 โŠขx=1stโกpโ†’x+ห™y=1stโกp+ห™y
239 238 neeq1d โŠขx=1stโกpโ†’x+ห™yโ‰ 0Kโ†”1stโกp+ห™yโ‰ 0K
240 neeq1 โŠขx=1stโกpโ†’xโ‰ 0ห™โ†”1stโกpโ‰ 0ห™
241 240 orbi1d โŠขx=1stโกpโ†’xโ‰ 0ห™โˆจyโ‰ 0ห™โ†”1stโกpโ‰ 0ห™โˆจyโ‰ 0ห™
242 239 241 imbi12d โŠขx=1stโกpโ†’x+ห™yโ‰ 0Kโ†’xโ‰ 0ห™โˆจyโ‰ 0ห™โ†”1stโกp+ห™yโ‰ 0Kโ†’1stโกpโ‰ 0ห™โˆจyโ‰ 0ห™
243 oveq2 โŠขy=2ndโกpโ†’1stโกp+ห™y=1stโกp+ห™2ndโกp
244 243 neeq1d โŠขy=2ndโกpโ†’1stโกp+ห™yโ‰ 0Kโ†”1stโกp+ห™2ndโกpโ‰ 0K
245 neeq1 โŠขy=2ndโกpโ†’yโ‰ 0ห™โ†”2ndโกpโ‰ 0ห™
246 245 orbi2d โŠขy=2ndโกpโ†’1stโกpโ‰ 0ห™โˆจyโ‰ 0ห™โ†”1stโกpโ‰ 0ห™โˆจ2ndโกpโ‰ 0ห™
247 244 246 imbi12d โŠขy=2ndโกpโ†’1stโกp+ห™yโ‰ 0Kโ†’1stโกpโ‰ 0ห™โˆจyโ‰ 0ห™โ†”1stโกp+ห™2ndโกpโ‰ 0Kโ†’1stโกpโ‰ 0ห™โˆจ2ndโกpโ‰ 0ห™
248 242 247 rspc2v โŠข1stโกpโˆˆBโˆง2ndโกpโˆˆBโ†’โˆ€xโˆˆBโˆ€yโˆˆBx+ห™yโ‰ 0Kโ†’xโ‰ 0ห™โˆจyโ‰ 0ห™โ†’1stโกp+ห™2ndโกpโ‰ 0Kโ†’1stโกpโ‰ 0ห™โˆจ2ndโกpโ‰ 0ห™
249 236 237 248 syl2anc โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโˆงpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGโ†’โˆ€xโˆˆBโˆ€yโˆˆBx+ห™yโ‰ 0Kโ†’xโ‰ 0ห™โˆจyโ‰ 0ห™โ†’1stโกp+ห™2ndโกpโ‰ 0Kโ†’1stโกpโ‰ 0ห™โˆจ2ndโกpโ‰ 0ห™
250 215 234 249 mp2d โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโˆงpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGโ†’1stโกpโ‰ 0ห™โˆจ2ndโกpโ‰ 0ห™
251 1 2 3 4 5 6 7 8 9 13 11 15 sibfinima โŠขฯ†โˆง1stโกpโˆˆranโกFโˆง2ndโกpโˆˆranโกGโˆง1stโกpโ‰ 0ห™โˆจ2ndโกpโ‰ 0ห™โ†’MโกF-11stโกpโˆฉG-12ndโกpโˆˆ0+โˆž
252 200 204 206 250 251 syl31anc โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโˆงpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGโ†’MโกF-11stโกpโˆฉG-12ndโกpโˆˆ0+โˆž
253 199 252 esumpfinval โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโ†’โˆ‘*pโˆˆ+ห™-1zโˆฉranโกFร—ranโกGMโกF-11stโกpโˆฉG-12ndโกp=โˆ‘pโˆˆ+ห™-1zโˆฉranโกFร—ranโกGMโกF-11stโกpโˆฉG-12ndโกp
254 172 196 253 3eqtrd โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโ†’MโกF+ห™fG-1z=โˆ‘pโˆˆ+ห™-1zโˆฉranโกFร—ranโกGMโกF-11stโกpโˆฉG-12ndโกp
255 rge0ssre โŠข0+โˆžโŠ†โ„
256 255 252 sselid โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโˆงpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGโ†’MโกF-11stโกpโˆฉG-12ndโกpโˆˆโ„
257 199 256 fsumrecl โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโ†’โˆ‘pโˆˆ+ห™-1zโˆฉranโกFร—ranโกGMโกF-11stโกpโˆฉG-12ndโกpโˆˆโ„
258 254 257 eqeltrd โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโ†’MโกF+ห™fG-1zโˆˆโ„
259 175 adantr โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโˆงpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGโ†’MโˆˆmeasuresโกdomโกM
260 176 109 sylanl2 โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโˆงpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGโ†’F-11stโกpโˆฉG-12ndโกpโˆˆdomโกM
261 measge0 โŠขMโˆˆmeasuresโกdomโกMโˆงF-11stโกpโˆฉG-12ndโกpโˆˆdomโกMโ†’0โ‰คMโกF-11stโกpโˆฉG-12ndโกp
262 259 260 261 syl2anc โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโˆงpโˆˆ+ห™-1zโˆฉranโกFร—ranโกGโ†’0โ‰คMโกF-11stโกpโˆฉG-12ndโกp
263 199 256 262 fsumge0 โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโ†’0โ‰คโˆ‘pโˆˆ+ห™-1zโˆฉranโกFร—ranโกGMโกF-11stโกpโˆฉG-12ndโกp
264 263 254 breqtrrd โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโ†’0โ‰คMโกF+ห™fG-1z
265 elrege0 โŠขMโกF+ห™fG-1zโˆˆ0+โˆžโ†”MโกF+ห™fG-1zโˆˆโ„โˆง0โ‰คMโกF+ห™fG-1z
266 258 264 265 sylanbrc โŠขฯ†โˆงzโˆˆranโกF+ห™fGโˆ–0Kโ†’MโกF+ห™fG-1zโˆˆ0+โˆž
267 266 ralrimiva โŠขฯ†โ†’โˆ€zโˆˆranโกF+ห™fGโˆ–0KMโกF+ห™fG-1zโˆˆ0+โˆž
268 eqid โŠข๐›”โกTopOpenโกK=๐›”โกTopOpenโกK
269 eqid โŠข0K=0K
270 eqid โŠขโ‹…K=โ‹…K
271 eqid โŠขโ„HomโกScalarโกK=โ„HomโกScalarโกK
272 10 30 268 269 270 271 14 8 issibf โŠขฯ†โ†’F+ห™fGโˆˆโ„‘MKโ†”F+ห™fGโˆˆdomโกMMblFnฮผ๐›”โกTopOpenโกKโˆงranโกF+ห™fGโˆˆFinโˆงโˆ€zโˆˆranโกF+ห™fGโˆ–0KMโกF+ห™fG-1zโˆˆ0+โˆž
273 170 138 267 272 mpbir3and โŠขฯ†โ†’F+ห™fGโˆˆโ„‘MK