Metamath Proof Explorer


Theorem sibfinima

Description: The measure of the intersection of any two preimages by simple functions is a real number. (Contributed by Thierry Arnoux, 21-Mar-2018)

Ref Expression
Hypotheses sitgval.b B = Base W
sitgval.j J = TopOpen W
sitgval.s S = 𝛔 J
sitgval.0 0 ˙ = 0 W
sitgval.x · ˙ = W
sitgval.h H = ℝHom Scalar W
sitgval.1 φ W V
sitgval.2 φ M ran measures
sibfmbl.1 φ F M W
sibfinima.g φ G M W
sibfinima.w φ W TopSp
sibfinima.j φ J Fre
Assertion sibfinima φ X ran F Y ran G X 0 ˙ Y 0 ˙ M F -1 X G -1 Y 0 +∞

Proof

Step Hyp Ref Expression
1 sitgval.b B = Base W
2 sitgval.j J = TopOpen W
3 sitgval.s S = 𝛔 J
4 sitgval.0 0 ˙ = 0 W
5 sitgval.x · ˙ = W
6 sitgval.h H = ℝHom Scalar W
7 sitgval.1 φ W V
8 sitgval.2 φ M ran measures
9 sibfmbl.1 φ F M W
10 sibfinima.g φ G M W
11 sibfinima.w φ W TopSp
12 sibfinima.j φ J Fre
13 measbasedom M ran measures M measures dom M
14 8 13 sylib φ M measures dom M
15 14 3ad2ant1 φ X ran F Y ran G M measures dom M
16 dmmeas M ran measures dom M ran sigAlgebra
17 8 16 syl φ dom M ran sigAlgebra
18 17 3ad2ant1 φ X ran F Y ran G dom M ran sigAlgebra
19 12 sgsiga φ 𝛔 J ran sigAlgebra
20 3 19 eqeltrid φ S ran sigAlgebra
21 20 3ad2ant1 φ X ran F Y ran G S ran sigAlgebra
22 1 2 3 4 5 6 7 8 9 sibfmbl φ F dom M MblFn μ S
23 22 3ad2ant1 φ X ran F Y ran G F dom M MblFn μ S
24 2 tpstop W TopSp J Top
25 cldssbrsiga J Top Clsd J 𝛔 J
26 11 24 25 3syl φ Clsd J 𝛔 J
27 26 3 sseqtrrdi φ Clsd J S
28 27 3ad2ant1 φ X ran F Y ran G Clsd J S
29 12 3ad2ant1 φ X ran F Y ran G J Fre
30 1 2 3 4 5 6 7 8 9 sibff φ F : dom M J
31 30 frnd φ ran F J
32 31 3ad2ant1 φ X ran F Y ran G ran F J
33 simp2 φ X ran F Y ran G X ran F
34 32 33 sseldd φ X ran F Y ran G X J
35 eqid J = J
36 35 t1sncld J Fre X J X Clsd J
37 29 34 36 syl2anc φ X ran F Y ran G X Clsd J
38 28 37 sseldd φ X ran F Y ran G X S
39 18 21 23 38 mbfmcnvima φ X ran F Y ran G F -1 X dom M
40 1 2 3 4 5 6 7 8 10 sibfmbl φ G dom M MblFn μ S
41 40 3ad2ant1 φ X ran F Y ran G G dom M MblFn μ S
42 1 2 3 4 5 6 7 8 10 sibff φ G : dom M J
43 42 frnd φ ran G J
44 43 3ad2ant1 φ X ran F Y ran G ran G J
45 simp3 φ X ran F Y ran G Y ran G
46 44 45 sseldd φ X ran F Y ran G Y J
47 35 t1sncld J Fre Y J Y Clsd J
48 29 46 47 syl2anc φ X ran F Y ran G Y Clsd J
49 28 48 sseldd φ X ran F Y ran G Y S
50 18 21 41 49 mbfmcnvima φ X ran F Y ran G G -1 Y dom M
51 inelsiga dom M ran sigAlgebra F -1 X dom M G -1 Y dom M F -1 X G -1 Y dom M
52 18 39 50 51 syl3anc φ X ran F Y ran G F -1 X G -1 Y dom M
53 measvxrge0 M measures dom M F -1 X G -1 Y dom M M F -1 X G -1 Y 0 +∞
54 15 52 53 syl2anc φ X ran F Y ran G M F -1 X G -1 Y 0 +∞
55 elxrge0 M F -1 X G -1 Y 0 +∞ M F -1 X G -1 Y * 0 M F -1 X G -1 Y
56 55 simplbi M F -1 X G -1 Y 0 +∞ M F -1 X G -1 Y *
57 54 56 syl φ X ran F Y ran G M F -1 X G -1 Y *
58 57 adantr φ X ran F Y ran G X 0 ˙ Y 0 ˙ M F -1 X G -1 Y *
59 0re 0
60 59 a1i φ X ran F Y ran G X 0 ˙ Y 0 ˙ 0
61 55 simprbi M F -1 X G -1 Y 0 +∞ 0 M F -1 X G -1 Y
62 54 61 syl φ X ran F Y ran G 0 M F -1 X G -1 Y
63 62 adantr φ X ran F Y ran G X 0 ˙ Y 0 ˙ 0 M F -1 X G -1 Y
64 57 adantr φ X ran F Y ran G X 0 ˙ M F -1 X G -1 Y *
65 15 adantr φ X ran F Y ran G X 0 ˙ M measures dom M
66 39 adantr φ X ran F Y ran G X 0 ˙ F -1 X dom M
67 measvxrge0 M measures dom M F -1 X dom M M F -1 X 0 +∞
68 65 66 67 syl2anc φ X ran F Y ran G X 0 ˙ M F -1 X 0 +∞
69 elxrge0 M F -1 X 0 +∞ M F -1 X * 0 M F -1 X
70 69 simplbi M F -1 X 0 +∞ M F -1 X *
71 68 70 syl φ X ran F Y ran G X 0 ˙ M F -1 X *
72 pnfxr +∞ *
73 72 a1i φ X ran F Y ran G X 0 ˙ +∞ *
74 52 adantr φ X ran F Y ran G X 0 ˙ F -1 X G -1 Y dom M
75 inss1 F -1 X G -1 Y F -1 X
76 75 a1i φ X ran F Y ran G X 0 ˙ F -1 X G -1 Y F -1 X
77 65 74 66 76 measssd φ X ran F Y ran G X 0 ˙ M F -1 X G -1 Y M F -1 X
78 simpl1 φ X ran F Y ran G X 0 ˙ φ
79 33 anim1i φ X ran F Y ran G X 0 ˙ X ran F X 0 ˙
80 eldifsn X ran F 0 ˙ X ran F X 0 ˙
81 79 80 sylibr φ X ran F Y ran G X 0 ˙ X ran F 0 ˙
82 1 2 3 4 5 6 7 8 9 sibfima φ X ran F 0 ˙ M F -1 X 0 +∞
83 78 81 82 syl2anc φ X ran F Y ran G X 0 ˙ M F -1 X 0 +∞
84 elico2 0 +∞ * M F -1 X 0 +∞ M F -1 X 0 M F -1 X M F -1 X < +∞
85 59 72 84 mp2an M F -1 X 0 +∞ M F -1 X 0 M F -1 X M F -1 X < +∞
86 85 simp3bi M F -1 X 0 +∞ M F -1 X < +∞
87 83 86 syl φ X ran F Y ran G X 0 ˙ M F -1 X < +∞
88 64 71 73 77 87 xrlelttrd φ X ran F Y ran G X 0 ˙ M F -1 X G -1 Y < +∞
89 57 adantr φ X ran F Y ran G Y 0 ˙ M F -1 X G -1 Y *
90 15 adantr φ X ran F Y ran G Y 0 ˙ M measures dom M
91 50 adantr φ X ran F Y ran G Y 0 ˙ G -1 Y dom M
92 measvxrge0 M measures dom M G -1 Y dom M M G -1 Y 0 +∞
93 90 91 92 syl2anc φ X ran F Y ran G Y 0 ˙ M G -1 Y 0 +∞
94 elxrge0 M G -1 Y 0 +∞ M G -1 Y * 0 M G -1 Y
95 94 simplbi M G -1 Y 0 +∞ M G -1 Y *
96 93 95 syl φ X ran F Y ran G Y 0 ˙ M G -1 Y *
97 72 a1i φ X ran F Y ran G Y 0 ˙ +∞ *
98 52 adantr φ X ran F Y ran G Y 0 ˙ F -1 X G -1 Y dom M
99 inss2 F -1 X G -1 Y G -1 Y
100 99 a1i φ X ran F Y ran G Y 0 ˙ F -1 X G -1 Y G -1 Y
101 90 98 91 100 measssd φ X ran F Y ran G Y 0 ˙ M F -1 X G -1 Y M G -1 Y
102 simpl1 φ X ran F Y ran G Y 0 ˙ φ
103 45 anim1i φ X ran F Y ran G Y 0 ˙ Y ran G Y 0 ˙
104 eldifsn Y ran G 0 ˙ Y ran G Y 0 ˙
105 103 104 sylibr φ X ran F Y ran G Y 0 ˙ Y ran G 0 ˙
106 1 2 3 4 5 6 7 8 10 sibfima φ Y ran G 0 ˙ M G -1 Y 0 +∞
107 102 105 106 syl2anc φ X ran F Y ran G Y 0 ˙ M G -1 Y 0 +∞
108 elico2 0 +∞ * M G -1 Y 0 +∞ M G -1 Y 0 M G -1 Y M G -1 Y < +∞
109 59 72 108 mp2an M G -1 Y 0 +∞ M G -1 Y 0 M G -1 Y M G -1 Y < +∞
110 109 simp3bi M G -1 Y 0 +∞ M G -1 Y < +∞
111 107 110 syl φ X ran F Y ran G Y 0 ˙ M G -1 Y < +∞
112 89 96 97 101 111 xrlelttrd φ X ran F Y ran G Y 0 ˙ M F -1 X G -1 Y < +∞
113 88 112 jaodan φ X ran F Y ran G X 0 ˙ Y 0 ˙ M F -1 X G -1 Y < +∞
114 xrre3 M F -1 X G -1 Y * 0 0 M F -1 X G -1 Y M F -1 X G -1 Y < +∞ M F -1 X G -1 Y
115 58 60 63 113 114 syl22anc φ X ran F Y ran G X 0 ˙ Y 0 ˙ M F -1 X G -1 Y
116 elico2 0 +∞ * M F -1 X G -1 Y 0 +∞ M F -1 X G -1 Y 0 M F -1 X G -1 Y M F -1 X G -1 Y < +∞
117 59 72 116 mp2an M F -1 X G -1 Y 0 +∞ M F -1 X G -1 Y 0 M F -1 X G -1 Y M F -1 X G -1 Y < +∞
118 115 63 113 117 syl3anbrc φ X ran F Y ran G X 0 ˙ Y 0 ˙ M F -1 X G -1 Y 0 +∞