| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ofpreima.1 |
|
| 2 |
|
ofpreima.2 |
|
| 3 |
|
ofpreima.3 |
|
| 4 |
|
ofpreima.4 |
|
| 5 |
1 2 3 4
|
ofpreima |
|
| 6 |
|
inundif |
|
| 7 |
|
iuneq1 |
|
| 8 |
6 7
|
ax-mp |
|
| 9 |
|
iunxun |
|
| 10 |
8 9
|
eqtr3i |
|
| 11 |
5 10
|
eqtrdi |
|
| 12 |
|
simpr |
|
| 13 |
12
|
eldifbd |
|
| 14 |
|
cnvimass |
|
| 15 |
4
|
fndmd |
|
| 16 |
14 15
|
sseqtrid |
|
| 17 |
16
|
ssdifssd |
|
| 18 |
17
|
sselda |
|
| 19 |
|
1st2nd2 |
|
| 20 |
|
elxp6 |
|
| 21 |
20
|
simplbi2 |
|
| 22 |
18 19 21
|
3syl |
|
| 23 |
13 22
|
mtod |
|
| 24 |
|
ianor |
|
| 25 |
23 24
|
sylib |
|
| 26 |
|
disjsn |
|
| 27 |
|
disjsn |
|
| 28 |
26 27
|
orbi12i |
|
| 29 |
25 28
|
sylibr |
|
| 30 |
1
|
ffnd |
|
| 31 |
|
dffn3 |
|
| 32 |
30 31
|
sylib |
|
| 33 |
2
|
ffnd |
|
| 34 |
|
dffn3 |
|
| 35 |
33 34
|
sylib |
|
| 36 |
35
|
adantr |
|
| 37 |
|
fimacnvdisj |
|
| 38 |
|
ineq1 |
|
| 39 |
|
0in |
|
| 40 |
38 39
|
eqtrdi |
|
| 41 |
37 40
|
syl |
|
| 42 |
41
|
ex |
|
| 43 |
|
fimacnvdisj |
|
| 44 |
|
ineq2 |
|
| 45 |
|
in0 |
|
| 46 |
44 45
|
eqtrdi |
|
| 47 |
43 46
|
syl |
|
| 48 |
47
|
ex |
|
| 49 |
42 48
|
jaao |
|
| 50 |
32 36 49
|
syl2an2r |
|
| 51 |
29 50
|
mpd |
|
| 52 |
51
|
iuneq2dv |
|
| 53 |
|
iun0 |
|
| 54 |
52 53
|
eqtrdi |
|
| 55 |
54
|
uneq2d |
|
| 56 |
|
un0 |
|
| 57 |
55 56
|
eqtrdi |
|
| 58 |
11 57
|
eqtrd |
|