Metamath Proof Explorer


Theorem disjxpin

Description: Derive a disjunction over a Cartesian product from the disjunctions over its first and second elements. (Contributed by Thierry Arnoux, 9-Mar-2018)

Ref Expression
Hypotheses disjxpin.1 ( 𝑥 = ( 1st𝑝 ) → 𝐶 = 𝐸 )
disjxpin.2 ( 𝑦 = ( 2nd𝑝 ) → 𝐷 = 𝐹 )
disjxpin.3 ( 𝜑Disj 𝑥𝐴 𝐶 )
disjxpin.4 ( 𝜑Disj 𝑦𝐵 𝐷 )
Assertion disjxpin ( 𝜑Disj 𝑝 ∈ ( 𝐴 × 𝐵 ) ( 𝐸𝐹 ) )

Proof

Step Hyp Ref Expression
1 disjxpin.1 ( 𝑥 = ( 1st𝑝 ) → 𝐶 = 𝐸 )
2 disjxpin.2 ( 𝑦 = ( 2nd𝑝 ) → 𝐷 = 𝐹 )
3 disjxpin.3 ( 𝜑Disj 𝑥𝐴 𝐶 )
4 disjxpin.4 ( 𝜑Disj 𝑦𝐵 𝐷 )
5 xp1st ( 𝑞 ∈ ( 𝐴 × 𝐵 ) → ( 1st𝑞 ) ∈ 𝐴 )
6 5 ad2antrl ( ( 𝜑 ∧ ( 𝑞 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑟 ∈ ( 𝐴 × 𝐵 ) ) ) → ( 1st𝑞 ) ∈ 𝐴 )
7 xp1st ( 𝑟 ∈ ( 𝐴 × 𝐵 ) → ( 1st𝑟 ) ∈ 𝐴 )
8 7 ad2antll ( ( 𝜑 ∧ ( 𝑞 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑟 ∈ ( 𝐴 × 𝐵 ) ) ) → ( 1st𝑟 ) ∈ 𝐴 )
9 simpl ( ( 𝜑 ∧ ( 𝑞 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑟 ∈ ( 𝐴 × 𝐵 ) ) ) → 𝜑 )
10 disjors ( Disj 𝑥𝐴 𝐶 ↔ ∀ 𝑎𝐴𝑐𝐴 ( 𝑎 = 𝑐 ∨ ( 𝑎 / 𝑥 𝐶 𝑐 / 𝑥 𝐶 ) = ∅ ) )
11 3 10 sylib ( 𝜑 → ∀ 𝑎𝐴𝑐𝐴 ( 𝑎 = 𝑐 ∨ ( 𝑎 / 𝑥 𝐶 𝑐 / 𝑥 𝐶 ) = ∅ ) )
12 eqeq1 ( 𝑎 = ( 1st𝑞 ) → ( 𝑎 = 𝑐 ↔ ( 1st𝑞 ) = 𝑐 ) )
13 csbeq1 ( 𝑎 = ( 1st𝑞 ) → 𝑎 / 𝑥 𝐶 = ( 1st𝑞 ) / 𝑥 𝐶 )
14 13 ineq1d ( 𝑎 = ( 1st𝑞 ) → ( 𝑎 / 𝑥 𝐶 𝑐 / 𝑥 𝐶 ) = ( ( 1st𝑞 ) / 𝑥 𝐶 𝑐 / 𝑥 𝐶 ) )
15 14 eqeq1d ( 𝑎 = ( 1st𝑞 ) → ( ( 𝑎 / 𝑥 𝐶 𝑐 / 𝑥 𝐶 ) = ∅ ↔ ( ( 1st𝑞 ) / 𝑥 𝐶 𝑐 / 𝑥 𝐶 ) = ∅ ) )
16 12 15 orbi12d ( 𝑎 = ( 1st𝑞 ) → ( ( 𝑎 = 𝑐 ∨ ( 𝑎 / 𝑥 𝐶 𝑐 / 𝑥 𝐶 ) = ∅ ) ↔ ( ( 1st𝑞 ) = 𝑐 ∨ ( ( 1st𝑞 ) / 𝑥 𝐶 𝑐 / 𝑥 𝐶 ) = ∅ ) ) )
17 eqeq2 ( 𝑐 = ( 1st𝑟 ) → ( ( 1st𝑞 ) = 𝑐 ↔ ( 1st𝑞 ) = ( 1st𝑟 ) ) )
18 csbeq1 ( 𝑐 = ( 1st𝑟 ) → 𝑐 / 𝑥 𝐶 = ( 1st𝑟 ) / 𝑥 𝐶 )
19 18 ineq2d ( 𝑐 = ( 1st𝑟 ) → ( ( 1st𝑞 ) / 𝑥 𝐶 𝑐 / 𝑥 𝐶 ) = ( ( 1st𝑞 ) / 𝑥 𝐶 ( 1st𝑟 ) / 𝑥 𝐶 ) )
20 19 eqeq1d ( 𝑐 = ( 1st𝑟 ) → ( ( ( 1st𝑞 ) / 𝑥 𝐶 𝑐 / 𝑥 𝐶 ) = ∅ ↔ ( ( 1st𝑞 ) / 𝑥 𝐶 ( 1st𝑟 ) / 𝑥 𝐶 ) = ∅ ) )
21 17 20 orbi12d ( 𝑐 = ( 1st𝑟 ) → ( ( ( 1st𝑞 ) = 𝑐 ∨ ( ( 1st𝑞 ) / 𝑥 𝐶 𝑐 / 𝑥 𝐶 ) = ∅ ) ↔ ( ( 1st𝑞 ) = ( 1st𝑟 ) ∨ ( ( 1st𝑞 ) / 𝑥 𝐶 ( 1st𝑟 ) / 𝑥 𝐶 ) = ∅ ) ) )
22 16 21 rspc2v ( ( ( 1st𝑞 ) ∈ 𝐴 ∧ ( 1st𝑟 ) ∈ 𝐴 ) → ( ∀ 𝑎𝐴𝑐𝐴 ( 𝑎 = 𝑐 ∨ ( 𝑎 / 𝑥 𝐶 𝑐 / 𝑥 𝐶 ) = ∅ ) → ( ( 1st𝑞 ) = ( 1st𝑟 ) ∨ ( ( 1st𝑞 ) / 𝑥 𝐶 ( 1st𝑟 ) / 𝑥 𝐶 ) = ∅ ) ) )
23 11 22 syl5 ( ( ( 1st𝑞 ) ∈ 𝐴 ∧ ( 1st𝑟 ) ∈ 𝐴 ) → ( 𝜑 → ( ( 1st𝑞 ) = ( 1st𝑟 ) ∨ ( ( 1st𝑞 ) / 𝑥 𝐶 ( 1st𝑟 ) / 𝑥 𝐶 ) = ∅ ) ) )
24 23 imp ( ( ( ( 1st𝑞 ) ∈ 𝐴 ∧ ( 1st𝑟 ) ∈ 𝐴 ) ∧ 𝜑 ) → ( ( 1st𝑞 ) = ( 1st𝑟 ) ∨ ( ( 1st𝑞 ) / 𝑥 𝐶 ( 1st𝑟 ) / 𝑥 𝐶 ) = ∅ ) )
25 6 8 9 24 syl21anc ( ( 𝜑 ∧ ( 𝑞 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑟 ∈ ( 𝐴 × 𝐵 ) ) ) → ( ( 1st𝑞 ) = ( 1st𝑟 ) ∨ ( ( 1st𝑞 ) / 𝑥 𝐶 ( 1st𝑟 ) / 𝑥 𝐶 ) = ∅ ) )
26 xp2nd ( 𝑞 ∈ ( 𝐴 × 𝐵 ) → ( 2nd𝑞 ) ∈ 𝐵 )
27 26 ad2antrl ( ( 𝜑 ∧ ( 𝑞 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑟 ∈ ( 𝐴 × 𝐵 ) ) ) → ( 2nd𝑞 ) ∈ 𝐵 )
28 xp2nd ( 𝑟 ∈ ( 𝐴 × 𝐵 ) → ( 2nd𝑟 ) ∈ 𝐵 )
29 28 ad2antll ( ( 𝜑 ∧ ( 𝑞 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑟 ∈ ( 𝐴 × 𝐵 ) ) ) → ( 2nd𝑟 ) ∈ 𝐵 )
30 disjors ( Disj 𝑦𝐵 𝐷 ↔ ∀ 𝑏𝐵𝑑𝐵 ( 𝑏 = 𝑑 ∨ ( 𝑏 / 𝑦 𝐷 𝑑 / 𝑦 𝐷 ) = ∅ ) )
31 4 30 sylib ( 𝜑 → ∀ 𝑏𝐵𝑑𝐵 ( 𝑏 = 𝑑 ∨ ( 𝑏 / 𝑦 𝐷 𝑑 / 𝑦 𝐷 ) = ∅ ) )
32 eqeq1 ( 𝑏 = ( 2nd𝑞 ) → ( 𝑏 = 𝑑 ↔ ( 2nd𝑞 ) = 𝑑 ) )
33 csbeq1 ( 𝑏 = ( 2nd𝑞 ) → 𝑏 / 𝑦 𝐷 = ( 2nd𝑞 ) / 𝑦 𝐷 )
34 33 ineq1d ( 𝑏 = ( 2nd𝑞 ) → ( 𝑏 / 𝑦 𝐷 𝑑 / 𝑦 𝐷 ) = ( ( 2nd𝑞 ) / 𝑦 𝐷 𝑑 / 𝑦 𝐷 ) )
35 34 eqeq1d ( 𝑏 = ( 2nd𝑞 ) → ( ( 𝑏 / 𝑦 𝐷 𝑑 / 𝑦 𝐷 ) = ∅ ↔ ( ( 2nd𝑞 ) / 𝑦 𝐷 𝑑 / 𝑦 𝐷 ) = ∅ ) )
36 32 35 orbi12d ( 𝑏 = ( 2nd𝑞 ) → ( ( 𝑏 = 𝑑 ∨ ( 𝑏 / 𝑦 𝐷 𝑑 / 𝑦 𝐷 ) = ∅ ) ↔ ( ( 2nd𝑞 ) = 𝑑 ∨ ( ( 2nd𝑞 ) / 𝑦 𝐷 𝑑 / 𝑦 𝐷 ) = ∅ ) ) )
37 eqeq2 ( 𝑑 = ( 2nd𝑟 ) → ( ( 2nd𝑞 ) = 𝑑 ↔ ( 2nd𝑞 ) = ( 2nd𝑟 ) ) )
38 csbeq1 ( 𝑑 = ( 2nd𝑟 ) → 𝑑 / 𝑦 𝐷 = ( 2nd𝑟 ) / 𝑦 𝐷 )
39 38 ineq2d ( 𝑑 = ( 2nd𝑟 ) → ( ( 2nd𝑞 ) / 𝑦 𝐷 𝑑 / 𝑦 𝐷 ) = ( ( 2nd𝑞 ) / 𝑦 𝐷 ( 2nd𝑟 ) / 𝑦 𝐷 ) )
40 39 eqeq1d ( 𝑑 = ( 2nd𝑟 ) → ( ( ( 2nd𝑞 ) / 𝑦 𝐷 𝑑 / 𝑦 𝐷 ) = ∅ ↔ ( ( 2nd𝑞 ) / 𝑦 𝐷 ( 2nd𝑟 ) / 𝑦 𝐷 ) = ∅ ) )
41 37 40 orbi12d ( 𝑑 = ( 2nd𝑟 ) → ( ( ( 2nd𝑞 ) = 𝑑 ∨ ( ( 2nd𝑞 ) / 𝑦 𝐷 𝑑 / 𝑦 𝐷 ) = ∅ ) ↔ ( ( 2nd𝑞 ) = ( 2nd𝑟 ) ∨ ( ( 2nd𝑞 ) / 𝑦 𝐷 ( 2nd𝑟 ) / 𝑦 𝐷 ) = ∅ ) ) )
42 36 41 rspc2v ( ( ( 2nd𝑞 ) ∈ 𝐵 ∧ ( 2nd𝑟 ) ∈ 𝐵 ) → ( ∀ 𝑏𝐵𝑑𝐵 ( 𝑏 = 𝑑 ∨ ( 𝑏 / 𝑦 𝐷 𝑑 / 𝑦 𝐷 ) = ∅ ) → ( ( 2nd𝑞 ) = ( 2nd𝑟 ) ∨ ( ( 2nd𝑞 ) / 𝑦 𝐷 ( 2nd𝑟 ) / 𝑦 𝐷 ) = ∅ ) ) )
43 31 42 syl5 ( ( ( 2nd𝑞 ) ∈ 𝐵 ∧ ( 2nd𝑟 ) ∈ 𝐵 ) → ( 𝜑 → ( ( 2nd𝑞 ) = ( 2nd𝑟 ) ∨ ( ( 2nd𝑞 ) / 𝑦 𝐷 ( 2nd𝑟 ) / 𝑦 𝐷 ) = ∅ ) ) )
44 43 imp ( ( ( ( 2nd𝑞 ) ∈ 𝐵 ∧ ( 2nd𝑟 ) ∈ 𝐵 ) ∧ 𝜑 ) → ( ( 2nd𝑞 ) = ( 2nd𝑟 ) ∨ ( ( 2nd𝑞 ) / 𝑦 𝐷 ( 2nd𝑟 ) / 𝑦 𝐷 ) = ∅ ) )
45 27 29 9 44 syl21anc ( ( 𝜑 ∧ ( 𝑞 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑟 ∈ ( 𝐴 × 𝐵 ) ) ) → ( ( 2nd𝑞 ) = ( 2nd𝑟 ) ∨ ( ( 2nd𝑞 ) / 𝑦 𝐷 ( 2nd𝑟 ) / 𝑦 𝐷 ) = ∅ ) )
46 25 45 jca ( ( 𝜑 ∧ ( 𝑞 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑟 ∈ ( 𝐴 × 𝐵 ) ) ) → ( ( ( 1st𝑞 ) = ( 1st𝑟 ) ∨ ( ( 1st𝑞 ) / 𝑥 𝐶 ( 1st𝑟 ) / 𝑥 𝐶 ) = ∅ ) ∧ ( ( 2nd𝑞 ) = ( 2nd𝑟 ) ∨ ( ( 2nd𝑞 ) / 𝑦 𝐷 ( 2nd𝑟 ) / 𝑦 𝐷 ) = ∅ ) ) )
47 anddi ( ( ( ( 1st𝑞 ) = ( 1st𝑟 ) ∨ ( ( 1st𝑞 ) / 𝑥 𝐶 ( 1st𝑟 ) / 𝑥 𝐶 ) = ∅ ) ∧ ( ( 2nd𝑞 ) = ( 2nd𝑟 ) ∨ ( ( 2nd𝑞 ) / 𝑦 𝐷 ( 2nd𝑟 ) / 𝑦 𝐷 ) = ∅ ) ) ↔ ( ( ( ( 1st𝑞 ) = ( 1st𝑟 ) ∧ ( 2nd𝑞 ) = ( 2nd𝑟 ) ) ∨ ( ( 1st𝑞 ) = ( 1st𝑟 ) ∧ ( ( 2nd𝑞 ) / 𝑦 𝐷 ( 2nd𝑟 ) / 𝑦 𝐷 ) = ∅ ) ) ∨ ( ( ( ( 1st𝑞 ) / 𝑥 𝐶 ( 1st𝑟 ) / 𝑥 𝐶 ) = ∅ ∧ ( 2nd𝑞 ) = ( 2nd𝑟 ) ) ∨ ( ( ( 1st𝑞 ) / 𝑥 𝐶 ( 1st𝑟 ) / 𝑥 𝐶 ) = ∅ ∧ ( ( 2nd𝑞 ) / 𝑦 𝐷 ( 2nd𝑟 ) / 𝑦 𝐷 ) = ∅ ) ) ) )
48 46 47 sylib ( ( 𝜑 ∧ ( 𝑞 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑟 ∈ ( 𝐴 × 𝐵 ) ) ) → ( ( ( ( 1st𝑞 ) = ( 1st𝑟 ) ∧ ( 2nd𝑞 ) = ( 2nd𝑟 ) ) ∨ ( ( 1st𝑞 ) = ( 1st𝑟 ) ∧ ( ( 2nd𝑞 ) / 𝑦 𝐷 ( 2nd𝑟 ) / 𝑦 𝐷 ) = ∅ ) ) ∨ ( ( ( ( 1st𝑞 ) / 𝑥 𝐶 ( 1st𝑟 ) / 𝑥 𝐶 ) = ∅ ∧ ( 2nd𝑞 ) = ( 2nd𝑟 ) ) ∨ ( ( ( 1st𝑞 ) / 𝑥 𝐶 ( 1st𝑟 ) / 𝑥 𝐶 ) = ∅ ∧ ( ( 2nd𝑞 ) / 𝑦 𝐷 ( 2nd𝑟 ) / 𝑦 𝐷 ) = ∅ ) ) ) )
49 orass ( ( ( ( ( 1st𝑞 ) = ( 1st𝑟 ) ∧ ( 2nd𝑞 ) = ( 2nd𝑟 ) ) ∨ ( ( 1st𝑞 ) = ( 1st𝑟 ) ∧ ( ( 2nd𝑞 ) / 𝑦 𝐷 ( 2nd𝑟 ) / 𝑦 𝐷 ) = ∅ ) ) ∨ ( ( ( ( 1st𝑞 ) / 𝑥 𝐶 ( 1st𝑟 ) / 𝑥 𝐶 ) = ∅ ∧ ( 2nd𝑞 ) = ( 2nd𝑟 ) ) ∨ ( ( ( 1st𝑞 ) / 𝑥 𝐶 ( 1st𝑟 ) / 𝑥 𝐶 ) = ∅ ∧ ( ( 2nd𝑞 ) / 𝑦 𝐷 ( 2nd𝑟 ) / 𝑦 𝐷 ) = ∅ ) ) ) ↔ ( ( ( 1st𝑞 ) = ( 1st𝑟 ) ∧ ( 2nd𝑞 ) = ( 2nd𝑟 ) ) ∨ ( ( ( 1st𝑞 ) = ( 1st𝑟 ) ∧ ( ( 2nd𝑞 ) / 𝑦 𝐷 ( 2nd𝑟 ) / 𝑦 𝐷 ) = ∅ ) ∨ ( ( ( ( 1st𝑞 ) / 𝑥 𝐶 ( 1st𝑟 ) / 𝑥 𝐶 ) = ∅ ∧ ( 2nd𝑞 ) = ( 2nd𝑟 ) ) ∨ ( ( ( 1st𝑞 ) / 𝑥 𝐶 ( 1st𝑟 ) / 𝑥 𝐶 ) = ∅ ∧ ( ( 2nd𝑞 ) / 𝑦 𝐷 ( 2nd𝑟 ) / 𝑦 𝐷 ) = ∅ ) ) ) ) )
50 48 49 sylib ( ( 𝜑 ∧ ( 𝑞 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑟 ∈ ( 𝐴 × 𝐵 ) ) ) → ( ( ( 1st𝑞 ) = ( 1st𝑟 ) ∧ ( 2nd𝑞 ) = ( 2nd𝑟 ) ) ∨ ( ( ( 1st𝑞 ) = ( 1st𝑟 ) ∧ ( ( 2nd𝑞 ) / 𝑦 𝐷 ( 2nd𝑟 ) / 𝑦 𝐷 ) = ∅ ) ∨ ( ( ( ( 1st𝑞 ) / 𝑥 𝐶 ( 1st𝑟 ) / 𝑥 𝐶 ) = ∅ ∧ ( 2nd𝑞 ) = ( 2nd𝑟 ) ) ∨ ( ( ( 1st𝑞 ) / 𝑥 𝐶 ( 1st𝑟 ) / 𝑥 𝐶 ) = ∅ ∧ ( ( 2nd𝑞 ) / 𝑦 𝐷 ( 2nd𝑟 ) / 𝑦 𝐷 ) = ∅ ) ) ) ) )
51 xpopth ( ( 𝑞 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑟 ∈ ( 𝐴 × 𝐵 ) ) → ( ( ( 1st𝑞 ) = ( 1st𝑟 ) ∧ ( 2nd𝑞 ) = ( 2nd𝑟 ) ) ↔ 𝑞 = 𝑟 ) )
52 51 adantl ( ( 𝜑 ∧ ( 𝑞 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑟 ∈ ( 𝐴 × 𝐵 ) ) ) → ( ( ( 1st𝑞 ) = ( 1st𝑟 ) ∧ ( 2nd𝑞 ) = ( 2nd𝑟 ) ) ↔ 𝑞 = 𝑟 ) )
53 52 biimpd ( ( 𝜑 ∧ ( 𝑞 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑟 ∈ ( 𝐴 × 𝐵 ) ) ) → ( ( ( 1st𝑞 ) = ( 1st𝑟 ) ∧ ( 2nd𝑞 ) = ( 2nd𝑟 ) ) → 𝑞 = 𝑟 ) )
54 inss2 ( ( 𝑞 / 𝑝 𝐸 𝑟 / 𝑝 𝐸 ) ∩ ( 𝑞 / 𝑝 𝐹 𝑟 / 𝑝 𝐹 ) ) ⊆ ( 𝑞 / 𝑝 𝐹 𝑟 / 𝑝 𝐹 )
55 csbin 𝑞 / 𝑝 ( 𝐸𝐹 ) = ( 𝑞 / 𝑝 𝐸 𝑞 / 𝑝 𝐹 )
56 csbin 𝑟 / 𝑝 ( 𝐸𝐹 ) = ( 𝑟 / 𝑝 𝐸 𝑟 / 𝑝 𝐹 )
57 55 56 ineq12i ( 𝑞 / 𝑝 ( 𝐸𝐹 ) ∩ 𝑟 / 𝑝 ( 𝐸𝐹 ) ) = ( ( 𝑞 / 𝑝 𝐸 𝑞 / 𝑝 𝐹 ) ∩ ( 𝑟 / 𝑝 𝐸 𝑟 / 𝑝 𝐹 ) )
58 in4 ( ( 𝑞 / 𝑝 𝐸 𝑞 / 𝑝 𝐹 ) ∩ ( 𝑟 / 𝑝 𝐸 𝑟 / 𝑝 𝐹 ) ) = ( ( 𝑞 / 𝑝 𝐸 𝑟 / 𝑝 𝐸 ) ∩ ( 𝑞 / 𝑝 𝐹 𝑟 / 𝑝 𝐹 ) )
59 57 58 eqtri ( 𝑞 / 𝑝 ( 𝐸𝐹 ) ∩ 𝑟 / 𝑝 ( 𝐸𝐹 ) ) = ( ( 𝑞 / 𝑝 𝐸 𝑟 / 𝑝 𝐸 ) ∩ ( 𝑞 / 𝑝 𝐹 𝑟 / 𝑝 𝐹 ) )
60 vex 𝑞 ∈ V
61 csbnestgw ( 𝑞 ∈ V → 𝑞 / 𝑝 ( 2nd𝑝 ) / 𝑦 𝐷 = 𝑞 / 𝑝 ( 2nd𝑝 ) / 𝑦 𝐷 )
62 60 61 ax-mp 𝑞 / 𝑝 ( 2nd𝑝 ) / 𝑦 𝐷 = 𝑞 / 𝑝 ( 2nd𝑝 ) / 𝑦 𝐷
63 fvex ( 2nd𝑝 ) ∈ V
64 63 2 csbie ( 2nd𝑝 ) / 𝑦 𝐷 = 𝐹
65 64 csbeq2i 𝑞 / 𝑝 ( 2nd𝑝 ) / 𝑦 𝐷 = 𝑞 / 𝑝 𝐹
66 csbfv 𝑞 / 𝑝 ( 2nd𝑝 ) = ( 2nd𝑞 )
67 csbeq1 ( 𝑞 / 𝑝 ( 2nd𝑝 ) = ( 2nd𝑞 ) → 𝑞 / 𝑝 ( 2nd𝑝 ) / 𝑦 𝐷 = ( 2nd𝑞 ) / 𝑦 𝐷 )
68 66 67 ax-mp 𝑞 / 𝑝 ( 2nd𝑝 ) / 𝑦 𝐷 = ( 2nd𝑞 ) / 𝑦 𝐷
69 62 65 68 3eqtr3ri ( 2nd𝑞 ) / 𝑦 𝐷 = 𝑞 / 𝑝 𝐹
70 vex 𝑟 ∈ V
71 csbnestgw ( 𝑟 ∈ V → 𝑟 / 𝑝 ( 2nd𝑝 ) / 𝑦 𝐷 = 𝑟 / 𝑝 ( 2nd𝑝 ) / 𝑦 𝐷 )
72 70 71 ax-mp 𝑟 / 𝑝 ( 2nd𝑝 ) / 𝑦 𝐷 = 𝑟 / 𝑝 ( 2nd𝑝 ) / 𝑦 𝐷
73 64 csbeq2i 𝑟 / 𝑝 ( 2nd𝑝 ) / 𝑦 𝐷 = 𝑟 / 𝑝 𝐹
74 csbfv 𝑟 / 𝑝 ( 2nd𝑝 ) = ( 2nd𝑟 )
75 csbeq1 ( 𝑟 / 𝑝 ( 2nd𝑝 ) = ( 2nd𝑟 ) → 𝑟 / 𝑝 ( 2nd𝑝 ) / 𝑦 𝐷 = ( 2nd𝑟 ) / 𝑦 𝐷 )
76 74 75 ax-mp 𝑟 / 𝑝 ( 2nd𝑝 ) / 𝑦 𝐷 = ( 2nd𝑟 ) / 𝑦 𝐷
77 72 73 76 3eqtr3ri ( 2nd𝑟 ) / 𝑦 𝐷 = 𝑟 / 𝑝 𝐹
78 69 77 ineq12i ( ( 2nd𝑞 ) / 𝑦 𝐷 ( 2nd𝑟 ) / 𝑦 𝐷 ) = ( 𝑞 / 𝑝 𝐹 𝑟 / 𝑝 𝐹 )
79 54 59 78 3sstr4i ( 𝑞 / 𝑝 ( 𝐸𝐹 ) ∩ 𝑟 / 𝑝 ( 𝐸𝐹 ) ) ⊆ ( ( 2nd𝑞 ) / 𝑦 𝐷 ( 2nd𝑟 ) / 𝑦 𝐷 )
80 sseq0 ( ( ( 𝑞 / 𝑝 ( 𝐸𝐹 ) ∩ 𝑟 / 𝑝 ( 𝐸𝐹 ) ) ⊆ ( ( 2nd𝑞 ) / 𝑦 𝐷 ( 2nd𝑟 ) / 𝑦 𝐷 ) ∧ ( ( 2nd𝑞 ) / 𝑦 𝐷 ( 2nd𝑟 ) / 𝑦 𝐷 ) = ∅ ) → ( 𝑞 / 𝑝 ( 𝐸𝐹 ) ∩ 𝑟 / 𝑝 ( 𝐸𝐹 ) ) = ∅ )
81 79 80 mpan ( ( ( 2nd𝑞 ) / 𝑦 𝐷 ( 2nd𝑟 ) / 𝑦 𝐷 ) = ∅ → ( 𝑞 / 𝑝 ( 𝐸𝐹 ) ∩ 𝑟 / 𝑝 ( 𝐸𝐹 ) ) = ∅ )
82 81 a1i ( ( 𝜑 ∧ ( 𝑞 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑟 ∈ ( 𝐴 × 𝐵 ) ) ) → ( ( ( 2nd𝑞 ) / 𝑦 𝐷 ( 2nd𝑟 ) / 𝑦 𝐷 ) = ∅ → ( 𝑞 / 𝑝 ( 𝐸𝐹 ) ∩ 𝑟 / 𝑝 ( 𝐸𝐹 ) ) = ∅ ) )
83 82 adantld ( ( 𝜑 ∧ ( 𝑞 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑟 ∈ ( 𝐴 × 𝐵 ) ) ) → ( ( ( 1st𝑞 ) = ( 1st𝑟 ) ∧ ( ( 2nd𝑞 ) / 𝑦 𝐷 ( 2nd𝑟 ) / 𝑦 𝐷 ) = ∅ ) → ( 𝑞 / 𝑝 ( 𝐸𝐹 ) ∩ 𝑟 / 𝑝 ( 𝐸𝐹 ) ) = ∅ ) )
84 inss1 ( ( 𝑞 / 𝑝 𝐸 𝑟 / 𝑝 𝐸 ) ∩ ( 𝑞 / 𝑝 𝐹 𝑟 / 𝑝 𝐹 ) ) ⊆ ( 𝑞 / 𝑝 𝐸 𝑟 / 𝑝 𝐸 )
85 csbnestgw ( 𝑞 ∈ V → 𝑞 / 𝑝 ( 1st𝑝 ) / 𝑥 𝐶 = 𝑞 / 𝑝 ( 1st𝑝 ) / 𝑥 𝐶 )
86 60 85 ax-mp 𝑞 / 𝑝 ( 1st𝑝 ) / 𝑥 𝐶 = 𝑞 / 𝑝 ( 1st𝑝 ) / 𝑥 𝐶
87 fvex ( 1st𝑝 ) ∈ V
88 87 1 csbie ( 1st𝑝 ) / 𝑥 𝐶 = 𝐸
89 88 csbeq2i 𝑞 / 𝑝 ( 1st𝑝 ) / 𝑥 𝐶 = 𝑞 / 𝑝 𝐸
90 csbfv 𝑞 / 𝑝 ( 1st𝑝 ) = ( 1st𝑞 )
91 csbeq1 ( 𝑞 / 𝑝 ( 1st𝑝 ) = ( 1st𝑞 ) → 𝑞 / 𝑝 ( 1st𝑝 ) / 𝑥 𝐶 = ( 1st𝑞 ) / 𝑥 𝐶 )
92 90 91 ax-mp 𝑞 / 𝑝 ( 1st𝑝 ) / 𝑥 𝐶 = ( 1st𝑞 ) / 𝑥 𝐶
93 86 89 92 3eqtr3ri ( 1st𝑞 ) / 𝑥 𝐶 = 𝑞 / 𝑝 𝐸
94 csbnestgw ( 𝑟 ∈ V → 𝑟 / 𝑝 ( 1st𝑝 ) / 𝑥 𝐶 = 𝑟 / 𝑝 ( 1st𝑝 ) / 𝑥 𝐶 )
95 70 94 ax-mp 𝑟 / 𝑝 ( 1st𝑝 ) / 𝑥 𝐶 = 𝑟 / 𝑝 ( 1st𝑝 ) / 𝑥 𝐶
96 88 csbeq2i 𝑟 / 𝑝 ( 1st𝑝 ) / 𝑥 𝐶 = 𝑟 / 𝑝 𝐸
97 csbfv 𝑟 / 𝑝 ( 1st𝑝 ) = ( 1st𝑟 )
98 csbeq1 ( 𝑟 / 𝑝 ( 1st𝑝 ) = ( 1st𝑟 ) → 𝑟 / 𝑝 ( 1st𝑝 ) / 𝑥 𝐶 = ( 1st𝑟 ) / 𝑥 𝐶 )
99 97 98 ax-mp 𝑟 / 𝑝 ( 1st𝑝 ) / 𝑥 𝐶 = ( 1st𝑟 ) / 𝑥 𝐶
100 95 96 99 3eqtr3ri ( 1st𝑟 ) / 𝑥 𝐶 = 𝑟 / 𝑝 𝐸
101 93 100 ineq12i ( ( 1st𝑞 ) / 𝑥 𝐶 ( 1st𝑟 ) / 𝑥 𝐶 ) = ( 𝑞 / 𝑝 𝐸 𝑟 / 𝑝 𝐸 )
102 84 59 101 3sstr4i ( 𝑞 / 𝑝 ( 𝐸𝐹 ) ∩ 𝑟 / 𝑝 ( 𝐸𝐹 ) ) ⊆ ( ( 1st𝑞 ) / 𝑥 𝐶 ( 1st𝑟 ) / 𝑥 𝐶 )
103 sseq0 ( ( ( 𝑞 / 𝑝 ( 𝐸𝐹 ) ∩ 𝑟 / 𝑝 ( 𝐸𝐹 ) ) ⊆ ( ( 1st𝑞 ) / 𝑥 𝐶 ( 1st𝑟 ) / 𝑥 𝐶 ) ∧ ( ( 1st𝑞 ) / 𝑥 𝐶 ( 1st𝑟 ) / 𝑥 𝐶 ) = ∅ ) → ( 𝑞 / 𝑝 ( 𝐸𝐹 ) ∩ 𝑟 / 𝑝 ( 𝐸𝐹 ) ) = ∅ )
104 102 103 mpan ( ( ( 1st𝑞 ) / 𝑥 𝐶 ( 1st𝑟 ) / 𝑥 𝐶 ) = ∅ → ( 𝑞 / 𝑝 ( 𝐸𝐹 ) ∩ 𝑟 / 𝑝 ( 𝐸𝐹 ) ) = ∅ )
105 104 a1i ( ( 𝜑 ∧ ( 𝑞 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑟 ∈ ( 𝐴 × 𝐵 ) ) ) → ( ( ( 1st𝑞 ) / 𝑥 𝐶 ( 1st𝑟 ) / 𝑥 𝐶 ) = ∅ → ( 𝑞 / 𝑝 ( 𝐸𝐹 ) ∩ 𝑟 / 𝑝 ( 𝐸𝐹 ) ) = ∅ ) )
106 105 adantrd ( ( 𝜑 ∧ ( 𝑞 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑟 ∈ ( 𝐴 × 𝐵 ) ) ) → ( ( ( ( 1st𝑞 ) / 𝑥 𝐶 ( 1st𝑟 ) / 𝑥 𝐶 ) = ∅ ∧ ( 2nd𝑞 ) = ( 2nd𝑟 ) ) → ( 𝑞 / 𝑝 ( 𝐸𝐹 ) ∩ 𝑟 / 𝑝 ( 𝐸𝐹 ) ) = ∅ ) )
107 82 adantld ( ( 𝜑 ∧ ( 𝑞 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑟 ∈ ( 𝐴 × 𝐵 ) ) ) → ( ( ( ( 1st𝑞 ) / 𝑥 𝐶 ( 1st𝑟 ) / 𝑥 𝐶 ) = ∅ ∧ ( ( 2nd𝑞 ) / 𝑦 𝐷 ( 2nd𝑟 ) / 𝑦 𝐷 ) = ∅ ) → ( 𝑞 / 𝑝 ( 𝐸𝐹 ) ∩ 𝑟 / 𝑝 ( 𝐸𝐹 ) ) = ∅ ) )
108 106 107 jaod ( ( 𝜑 ∧ ( 𝑞 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑟 ∈ ( 𝐴 × 𝐵 ) ) ) → ( ( ( ( ( 1st𝑞 ) / 𝑥 𝐶 ( 1st𝑟 ) / 𝑥 𝐶 ) = ∅ ∧ ( 2nd𝑞 ) = ( 2nd𝑟 ) ) ∨ ( ( ( 1st𝑞 ) / 𝑥 𝐶 ( 1st𝑟 ) / 𝑥 𝐶 ) = ∅ ∧ ( ( 2nd𝑞 ) / 𝑦 𝐷 ( 2nd𝑟 ) / 𝑦 𝐷 ) = ∅ ) ) → ( 𝑞 / 𝑝 ( 𝐸𝐹 ) ∩ 𝑟 / 𝑝 ( 𝐸𝐹 ) ) = ∅ ) )
109 83 108 jaod ( ( 𝜑 ∧ ( 𝑞 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑟 ∈ ( 𝐴 × 𝐵 ) ) ) → ( ( ( ( 1st𝑞 ) = ( 1st𝑟 ) ∧ ( ( 2nd𝑞 ) / 𝑦 𝐷 ( 2nd𝑟 ) / 𝑦 𝐷 ) = ∅ ) ∨ ( ( ( ( 1st𝑞 ) / 𝑥 𝐶 ( 1st𝑟 ) / 𝑥 𝐶 ) = ∅ ∧ ( 2nd𝑞 ) = ( 2nd𝑟 ) ) ∨ ( ( ( 1st𝑞 ) / 𝑥 𝐶 ( 1st𝑟 ) / 𝑥 𝐶 ) = ∅ ∧ ( ( 2nd𝑞 ) / 𝑦 𝐷 ( 2nd𝑟 ) / 𝑦 𝐷 ) = ∅ ) ) ) → ( 𝑞 / 𝑝 ( 𝐸𝐹 ) ∩ 𝑟 / 𝑝 ( 𝐸𝐹 ) ) = ∅ ) )
110 53 109 orim12d ( ( 𝜑 ∧ ( 𝑞 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑟 ∈ ( 𝐴 × 𝐵 ) ) ) → ( ( ( ( 1st𝑞 ) = ( 1st𝑟 ) ∧ ( 2nd𝑞 ) = ( 2nd𝑟 ) ) ∨ ( ( ( 1st𝑞 ) = ( 1st𝑟 ) ∧ ( ( 2nd𝑞 ) / 𝑦 𝐷 ( 2nd𝑟 ) / 𝑦 𝐷 ) = ∅ ) ∨ ( ( ( ( 1st𝑞 ) / 𝑥 𝐶 ( 1st𝑟 ) / 𝑥 𝐶 ) = ∅ ∧ ( 2nd𝑞 ) = ( 2nd𝑟 ) ) ∨ ( ( ( 1st𝑞 ) / 𝑥 𝐶 ( 1st𝑟 ) / 𝑥 𝐶 ) = ∅ ∧ ( ( 2nd𝑞 ) / 𝑦 𝐷 ( 2nd𝑟 ) / 𝑦 𝐷 ) = ∅ ) ) ) ) → ( 𝑞 = 𝑟 ∨ ( 𝑞 / 𝑝 ( 𝐸𝐹 ) ∩ 𝑟 / 𝑝 ( 𝐸𝐹 ) ) = ∅ ) ) )
111 50 110 mpd ( ( 𝜑 ∧ ( 𝑞 ∈ ( 𝐴 × 𝐵 ) ∧ 𝑟 ∈ ( 𝐴 × 𝐵 ) ) ) → ( 𝑞 = 𝑟 ∨ ( 𝑞 / 𝑝 ( 𝐸𝐹 ) ∩ 𝑟 / 𝑝 ( 𝐸𝐹 ) ) = ∅ ) )
112 111 ralrimivva ( 𝜑 → ∀ 𝑞 ∈ ( 𝐴 × 𝐵 ) ∀ 𝑟 ∈ ( 𝐴 × 𝐵 ) ( 𝑞 = 𝑟 ∨ ( 𝑞 / 𝑝 ( 𝐸𝐹 ) ∩ 𝑟 / 𝑝 ( 𝐸𝐹 ) ) = ∅ ) )
113 disjors ( Disj 𝑝 ∈ ( 𝐴 × 𝐵 ) ( 𝐸𝐹 ) ↔ ∀ 𝑞 ∈ ( 𝐴 × 𝐵 ) ∀ 𝑟 ∈ ( 𝐴 × 𝐵 ) ( 𝑞 = 𝑟 ∨ ( 𝑞 / 𝑝 ( 𝐸𝐹 ) ∩ 𝑟 / 𝑝 ( 𝐸𝐹 ) ) = ∅ ) )
114 112 113 sylibr ( 𝜑Disj 𝑝 ∈ ( 𝐴 × 𝐵 ) ( 𝐸𝐹 ) )