Metamath Proof Explorer


Theorem simpggrp

Description: A simple group is a group. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Assertion simpggrp G SimpGrp G Grp

Proof

Step Hyp Ref Expression
1 issimpg G SimpGrp G Grp NrmSGrp G 2 𝑜
2 1 simplbi G SimpGrp G Grp