Metamath Proof Explorer


Theorem simpggrpd

Description: A simple group is a group. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypothesis simpggrpd.1 φGSimpGrp
Assertion simpggrpd φGGrp

Proof

Step Hyp Ref Expression
1 simpggrpd.1 φGSimpGrp
2 simpggrp GSimpGrpGGrp
3 1 2 syl φGGrp