Metamath Proof Explorer


Theorem simpggrpd

Description: A simple group is a group. (Contributed by Rohan Ridenour, 3-Aug-2023)

Ref Expression
Hypothesis simpggrpd.1 φ G SimpGrp
Assertion simpggrpd φ G Grp

Proof

Step Hyp Ref Expression
1 simpggrpd.1 φ G SimpGrp
2 simpggrp G SimpGrp G Grp
3 1 2 syl φ G Grp