Database
BASIC ALGEBRAIC STRUCTURES
Groups
Simple groups
Definition and basic properties
simpggrpd
Next ⟩
simpg2nsg
Metamath Proof Explorer
Ascii
Unicode
Theorem
simpggrpd
Description:
A simple group is a group.
(Contributed by
Rohan Ridenour
, 3-Aug-2023)
Ref
Expression
Hypothesis
simpggrpd.1
⊢
φ
→
G
∈
SimpGrp
Assertion
simpggrpd
⊢
φ
→
G
∈
Grp
Proof
Step
Hyp
Ref
Expression
1
simpggrpd.1
⊢
φ
→
G
∈
SimpGrp
2
simpggrp
⊢
G
∈
SimpGrp
→
G
∈
Grp
3
1
2
syl
⊢
φ
→
G
∈
Grp