Metamath Proof Explorer


Theorem simplbiim

Description: Implication from an eliminated conjunct equivalent to the antecedent. (Contributed by Jonathan Ben-Naim, 3-Jun-2011) (Proof shortened by Wolf Lammen, 26-Mar-2022)

Ref Expression
Hypotheses simplbiim.1 φψχ
simplbiim.2 χθ
Assertion simplbiim φθ

Proof

Step Hyp Ref Expression
1 simplbiim.1 φψχ
2 simplbiim.2 χθ
3 1 simprbi φχ
4 3 2 syl φθ