Metamath Proof Explorer


Theorem sin2t

Description: Double-angle formula for sine. (Contributed by Paul Chapman, 17-Jan-2008)

Ref Expression
Assertion sin2t Asin2A=2sinAcosA

Proof

Step Hyp Ref Expression
1 2times A2A=A+A
2 1 fveq2d Asin2A=sinA+A
3 coscl AcosA
4 sincl AsinA
5 3 4 mulcomd AcosAsinA=sinAcosA
6 5 oveq2d AsinAcosA+cosAsinA=sinAcosA+sinAcosA
7 sinadd AAsinA+A=sinAcosA+cosAsinA
8 7 anidms AsinA+A=sinAcosA+cosAsinA
9 4 3 mulcld AsinAcosA
10 9 2timesd A2sinAcosA=sinAcosA+sinAcosA
11 6 8 10 3eqtr4d AsinA+A=2sinAcosA
12 2 11 eqtrd Asin2A=2sinAcosA