Metamath Proof Explorer


Theorem sin4lt0

Description: The sine of 4 is negative. (Contributed by Paul Chapman, 19-Jan-2008)

Ref Expression
Assertion sin4lt0 sin4<0

Proof

Step Hyp Ref Expression
1 2t2e4 22=4
2 1 fveq2i sin22=sin4
3 2cn 2
4 sin2t 2sin22=2sin2cos2
5 3 4 ax-mp sin22=2sin2cos2
6 2 5 eqtr3i sin4=2sin2cos2
7 sincos2sgn 0<sin2cos2<0
8 7 simpri cos2<0
9 2re 2
10 recoscl 2cos2
11 9 10 ax-mp cos2
12 0re 0
13 resincl 2sin2
14 9 13 ax-mp sin2
15 7 simpli 0<sin2
16 14 15 pm3.2i sin20<sin2
17 ltmul2 cos20sin20<sin2cos2<0sin2cos2<sin20
18 11 12 16 17 mp3an cos2<0sin2cos2<sin20
19 8 18 mpbi sin2cos2<sin20
20 14 recni sin2
21 20 mul01i sin20=0
22 19 21 breqtri sin2cos2<0
23 14 11 remulcli sin2cos2
24 2pos 0<2
25 9 24 pm3.2i 20<2
26 ltmul2 sin2cos2020<2sin2cos2<02sin2cos2<20
27 23 12 25 26 mp3an sin2cos2<02sin2cos2<20
28 22 27 mpbi 2sin2cos2<20
29 3 mul01i 20=0
30 28 29 breqtri 2sin2cos2<0
31 6 30 eqbrtri sin4<0