Metamath Proof Explorer


Theorem sincos2sgn

Description: The signs of the sine and cosine of 2. (Contributed by Paul Chapman, 19-Jan-2008)

Ref Expression
Assertion sincos2sgn 0<sin2cos2<0

Proof

Step Hyp Ref Expression
1 2re 2
2 2pos 0<2
3 1 leidi 22
4 0xr 0*
5 elioc2 0*220220<222
6 4 1 5 mp2an 20220<222
7 1 2 3 6 mpbir3an 202
8 sin02gt0 2020<sin2
9 7 8 ax-mp 0<sin2
10 cos2bnd 79<cos2cos2<19
11 10 simpri cos2<19
12 9re 9
13 9pos 0<9
14 12 13 recgt0ii 0<19
15 12 13 gt0ne0ii 90
16 12 15 rereccli 19
17 lt0neg2 190<1919<0
18 16 17 ax-mp 0<1919<0
19 14 18 mpbi 19<0
20 recoscl 2cos2
21 1 20 ax-mp cos2
22 16 renegcli 19
23 0re 0
24 21 22 23 lttri cos2<1919<0cos2<0
25 11 19 24 mp2an cos2<0
26 9 25 pm3.2i 0<sin2cos2<0