Metamath Proof Explorer


Theorem sin02gt0

Description: The sine of a positive real number less than or equal to 2 is positive. (Contributed by Paul Chapman, 19-Jan-2008)

Ref Expression
Assertion sin02gt0 A020<sinA

Proof

Step Hyp Ref Expression
1 0xr 0*
2 2re 2
3 elioc2 0*2A02A0<AA2
4 1 2 3 mp2an A02A0<AA2
5 rehalfcl AA2
6 5 3ad2ant1 A0<AA2A2
7 4 6 sylbi A02A2
8 resincl A2sinA2
9 recoscl A2cosA2
10 8 9 remulcld A2sinA2cosA2
11 7 10 syl A02sinA2cosA2
12 2pos 0<2
13 divgt0 A0<A20<20<A2
14 2 12 13 mpanr12 A0<A0<A2
15 14 3adant3 A0<AA20<A2
16 2 12 pm3.2i 20<2
17 lediv1 A220<2A2A222
18 2 16 17 mp3an23 AA2A222
19 18 biimpa AA2A222
20 2div2e1 22=1
21 19 20 breqtrdi AA2A21
22 21 3adant2 A0<AA2A21
23 6 15 22 3jca A0<AA2A20<A2A21
24 1re 1
25 elioc2 0*1A201A20<A2A21
26 1 24 25 mp2an A201A20<A2A21
27 23 4 26 3imtr4i A02A201
28 sin01gt0 A2010<sinA2
29 27 28 syl A020<sinA2
30 cos01gt0 A2010<cosA2
31 27 30 syl A020<cosA2
32 axmulgt0 sinA2cosA20<sinA20<cosA20<sinA2cosA2
33 8 9 32 syl2anc A20<sinA20<cosA20<sinA2cosA2
34 7 33 syl A020<sinA20<cosA20<sinA2cosA2
35 29 31 34 mp2and A020<sinA2cosA2
36 axmulgt0 2sinA2cosA20<20<sinA2cosA20<2sinA2cosA2
37 2 36 mpan sinA2cosA20<20<sinA2cosA20<2sinA2cosA2
38 12 37 mpani sinA2cosA20<sinA2cosA20<2sinA2cosA2
39 11 35 38 sylc A020<2sinA2cosA2
40 7 recnd A02A2
41 sin2t A2sin2A2=2sinA2cosA2
42 40 41 syl A02sin2A2=2sinA2cosA2
43 39 42 breqtrrd A020<sin2A2
44 4 simp1bi A02A
45 44 recnd A02A
46 2cn 2
47 2ne0 20
48 divcan2 A2202A2=A
49 46 47 48 mp3an23 A2A2=A
50 45 49 syl A022A2=A
51 50 fveq2d A02sin2A2=sinA
52 43 51 breqtrd A020<sinA