Metamath Proof Explorer


Theorem sinf

Description: Domain and codomain of the sine function. (Contributed by Paul Chapman, 22-Oct-2007) (Revised by Mario Carneiro, 30-Apr-2014)

Ref Expression
Assertion sinf sin:

Proof

Step Hyp Ref Expression
1 df-sin sin=xeixeix2i
2 ax-icn i
3 mulcl ixix
4 2 3 mpan xix
5 efcl ixeix
6 4 5 syl xeix
7 negicn i
8 mulcl ixix
9 7 8 mpan xix
10 efcl ixeix
11 9 10 syl xeix
12 6 11 subcld xeixeix
13 2mulicn 2i
14 2muline0 2i0
15 divcl eixeix2i2i0eixeix2i
16 13 14 15 mp3an23 eixeixeixeix2i
17 12 16 syl xeixeix2i
18 1 17 fmpti sin: