Metamath Proof Explorer


Theorem singoutnword

Description: Singleton with character out of range V is not a word for that range. (Contributed by Ender Ting, 21-Nov-2024)

Ref Expression
Hypothesis singoutnword.1 AV
Assertion singoutnword ¬AV¬⟨“A”⟩WordV

Proof

Step Hyp Ref Expression
1 singoutnword.1 AV
2 s1fv AV⟨“A”⟩0=A
3 1 2 ax-mp ⟨“A”⟩0=A
4 s1nz ⟨“A”⟩
5 fstwrdne ⟨“A”⟩WordV⟨“A”⟩⟨“A”⟩0V
6 4 5 mpan2 ⟨“A”⟩WordV⟨“A”⟩0V
7 3 6 eqeltrrid ⟨“A”⟩WordVAV
8 7 con3i ¬AV¬⟨“A”⟩WordV