Metamath Proof Explorer


Theorem sinhalfpim

Description: The sine of _pi / 2 minus a number. (Contributed by Paul Chapman, 24-Jan-2008)

Ref Expression
Assertion sinhalfpim A sin π 2 A = cos A

Proof

Step Hyp Ref Expression
1 halfpire π 2
2 1 recni π 2
3 sinsub π 2 A sin π 2 A = sin π 2 cos A cos π 2 sin A
4 2 3 mpan A sin π 2 A = sin π 2 cos A cos π 2 sin A
5 sinhalfpi sin π 2 = 1
6 5 oveq1i sin π 2 cos A = 1 cos A
7 coscl A cos A
8 7 mulid2d A 1 cos A = cos A
9 6 8 eqtrid A sin π 2 cos A = cos A
10 coshalfpi cos π 2 = 0
11 10 oveq1i cos π 2 sin A = 0 sin A
12 sincl A sin A
13 12 mul02d A 0 sin A = 0
14 11 13 eqtrid A cos π 2 sin A = 0
15 9 14 oveq12d A sin π 2 cos A cos π 2 sin A = cos A 0
16 7 subid1d A cos A 0 = cos A
17 4 15 16 3eqtrd A sin π 2 A = cos A