Database
BASIC REAL AND COMPLEX FUNCTIONS
Basic trigonometry
Properties of pi = 3.14159...
sinhalfpim
Next ⟩
coshalfpip
Metamath Proof Explorer
Ascii
Unicode
Theorem
sinhalfpim
Description:
The sine of
_pi / 2
minus a number.
(Contributed by
Paul Chapman
, 24-Jan-2008)
Ref
Expression
Assertion
sinhalfpim
⊢
A
∈
ℂ
→
sin
⁡
π
2
−
A
=
cos
⁡
A
Proof
Step
Hyp
Ref
Expression
1
halfpire
⊢
π
2
∈
ℝ
2
1
recni
⊢
π
2
∈
ℂ
3
sinsub
⊢
π
2
∈
ℂ
∧
A
∈
ℂ
→
sin
⁡
π
2
−
A
=
sin
⁡
π
2
⁢
cos
⁡
A
−
cos
⁡
π
2
⁢
sin
⁡
A
4
2
3
mpan
⊢
A
∈
ℂ
→
sin
⁡
π
2
−
A
=
sin
⁡
π
2
⁢
cos
⁡
A
−
cos
⁡
π
2
⁢
sin
⁡
A
5
sinhalfpi
⊢
sin
⁡
π
2
=
1
6
5
oveq1i
⊢
sin
⁡
π
2
⁢
cos
⁡
A
=
1
⁢
cos
⁡
A
7
coscl
⊢
A
∈
ℂ
→
cos
⁡
A
∈
ℂ
8
7
mulid2d
⊢
A
∈
ℂ
→
1
⁢
cos
⁡
A
=
cos
⁡
A
9
6
8
eqtrid
⊢
A
∈
ℂ
→
sin
⁡
π
2
⁢
cos
⁡
A
=
cos
⁡
A
10
coshalfpi
⊢
cos
⁡
π
2
=
0
11
10
oveq1i
⊢
cos
⁡
π
2
⁢
sin
⁡
A
=
0
⋅
sin
⁡
A
12
sincl
⊢
A
∈
ℂ
→
sin
⁡
A
∈
ℂ
13
12
mul02d
⊢
A
∈
ℂ
→
0
⋅
sin
⁡
A
=
0
14
11
13
eqtrid
⊢
A
∈
ℂ
→
cos
⁡
π
2
⁢
sin
⁡
A
=
0
15
9
14
oveq12d
⊢
A
∈
ℂ
→
sin
⁡
π
2
⁢
cos
⁡
A
−
cos
⁡
π
2
⁢
sin
⁡
A
=
cos
⁡
A
−
0
16
7
subid1d
⊢
A
∈
ℂ
→
cos
⁡
A
−
0
=
cos
⁡
A
17
4
15
16
3eqtrd
⊢
A
∈
ℂ
→
sin
⁡
π
2
−
A
=
cos
⁡
A