Metamath Proof Explorer


Theorem coshalfpip

Description: The cosine of _pi / 2 plus a number. (Contributed by Paul Chapman, 24-Jan-2008)

Ref Expression
Assertion coshalfpip Acosπ2+A=sinA

Proof

Step Hyp Ref Expression
1 coshalfpi cosπ2=0
2 1 oveq1i cosπ2cosA=0cosA
3 coscl AcosA
4 3 mul02d A0cosA=0
5 2 4 eqtrid Acosπ2cosA=0
6 sinhalfpi sinπ2=1
7 6 oveq1i sinπ2sinA=1sinA
8 sincl AsinA
9 8 mullidd A1sinA=sinA
10 7 9 eqtrid Asinπ2sinA=sinA
11 5 10 oveq12d Acosπ2cosAsinπ2sinA=0sinA
12 halfpire π2
13 12 recni π2
14 cosadd π2Acosπ2+A=cosπ2cosAsinπ2sinA
15 13 14 mpan Acosπ2+A=cosπ2cosAsinπ2sinA
16 df-neg sinA=0sinA
17 16 a1i AsinA=0sinA
18 11 15 17 3eqtr4d Acosπ2+A=sinA