| Step |
Hyp |
Ref |
Expression |
| 1 |
|
addcl |
|
| 2 |
|
cosval |
|
| 3 |
1 2
|
syl |
|
| 4 |
|
coscl |
|
| 5 |
4
|
adantr |
|
| 6 |
|
coscl |
|
| 7 |
6
|
adantl |
|
| 8 |
5 7
|
mulcld |
|
| 9 |
|
ax-icn |
|
| 10 |
|
sincl |
|
| 11 |
10
|
adantl |
|
| 12 |
|
mulcl |
|
| 13 |
9 11 12
|
sylancr |
|
| 14 |
|
sincl |
|
| 15 |
14
|
adantr |
|
| 16 |
|
mulcl |
|
| 17 |
9 15 16
|
sylancr |
|
| 18 |
13 17
|
mulcld |
|
| 19 |
8 18
|
addcld |
|
| 20 |
5 13
|
mulcld |
|
| 21 |
7 17
|
mulcld |
|
| 22 |
20 21
|
addcld |
|
| 23 |
19 22 19
|
ppncand |
|
| 24 |
|
adddi |
|
| 25 |
9 24
|
mp3an1 |
|
| 26 |
25
|
fveq2d |
|
| 27 |
|
simpl |
|
| 28 |
|
mulcl |
|
| 29 |
9 27 28
|
sylancr |
|
| 30 |
|
simpr |
|
| 31 |
|
mulcl |
|
| 32 |
9 30 31
|
sylancr |
|
| 33 |
|
efadd |
|
| 34 |
29 32 33
|
syl2anc |
|
| 35 |
|
efival |
|
| 36 |
|
efival |
|
| 37 |
35 36
|
oveqan12d |
|
| 38 |
5 17 7 13
|
muladdd |
|
| 39 |
37 38
|
eqtrd |
|
| 40 |
26 34 39
|
3eqtrd |
|
| 41 |
|
negicn |
|
| 42 |
|
adddi |
|
| 43 |
41 42
|
mp3an1 |
|
| 44 |
43
|
fveq2d |
|
| 45 |
|
mulcl |
|
| 46 |
41 27 45
|
sylancr |
|
| 47 |
|
mulcl |
|
| 48 |
41 30 47
|
sylancr |
|
| 49 |
|
efadd |
|
| 50 |
46 48 49
|
syl2anc |
|
| 51 |
|
efmival |
|
| 52 |
|
efmival |
|
| 53 |
51 52
|
oveqan12d |
|
| 54 |
5 17 7 13
|
mulsubd |
|
| 55 |
53 54
|
eqtrd |
|
| 56 |
44 50 55
|
3eqtrd |
|
| 57 |
40 56
|
oveq12d |
|
| 58 |
19
|
2timesd |
|
| 59 |
23 57 58
|
3eqtr4d |
|
| 60 |
59
|
oveq1d |
|
| 61 |
|
2cn |
|
| 62 |
|
2ne0 |
|
| 63 |
|
divcan3 |
|
| 64 |
61 62 63
|
mp3an23 |
|
| 65 |
19 64
|
syl |
|
| 66 |
9
|
a1i |
|
| 67 |
66 11 66 15
|
mul4d |
|
| 68 |
|
ixi |
|
| 69 |
68
|
oveq1i |
|
| 70 |
11 15
|
mulcomd |
|
| 71 |
70
|
oveq2d |
|
| 72 |
69 71
|
eqtrid |
|
| 73 |
15 11
|
mulcld |
|
| 74 |
73
|
mulm1d |
|
| 75 |
67 72 74
|
3eqtrd |
|
| 76 |
75
|
oveq2d |
|
| 77 |
8 73
|
negsubd |
|
| 78 |
65 76 77
|
3eqtrd |
|
| 79 |
3 60 78
|
3eqtrd |
|