Description: A useful intermediate step in tanadd when showing that the addition of tangents is well-defined. (Contributed by Mario Carneiro, 4-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | tanaddlem | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coscl | |
|
2 | 1 | ad2antrr | |
3 | coscl | |
|
4 | 3 | ad2antlr | |
5 | 2 4 | mulcld | |
6 | sincl | |
|
7 | 6 | ad2antrr | |
8 | sincl | |
|
9 | 8 | ad2antlr | |
10 | 7 9 | mulcld | |
11 | 5 10 | subeq0ad | |
12 | cosadd | |
|
13 | 12 | adantr | |
14 | 13 | eqeq1d | |
15 | tanval | |
|
16 | 15 | ad2ant2r | |
17 | tanval | |
|
18 | 17 | ad2ant2l | |
19 | 16 18 | oveq12d | |
20 | simprl | |
|
21 | simprr | |
|
22 | 7 2 9 4 20 21 | divmuldivd | |
23 | 19 22 | eqtrd | |
24 | 23 | eqeq1d | |
25 | 1cnd | |
|
26 | 2 4 20 21 | mulne0d | |
27 | 10 5 25 26 | divmuld | |
28 | 5 | mulridd | |
29 | 28 | eqeq1d | |
30 | 24 27 29 | 3bitrd | |
31 | 11 14 30 | 3bitr4d | |
32 | 31 | necon3bid | |