Metamath Proof Explorer


Theorem tanaddlem

Description: A useful intermediate step in tanadd when showing that the addition of tangents is well-defined. (Contributed by Mario Carneiro, 4-Apr-2015)

Ref Expression
Assertion tanaddlem ABcosA0cosB0cosA+B0tanAtanB1

Proof

Step Hyp Ref Expression
1 coscl AcosA
2 1 ad2antrr ABcosA0cosB0cosA
3 coscl BcosB
4 3 ad2antlr ABcosA0cosB0cosB
5 2 4 mulcld ABcosA0cosB0cosAcosB
6 sincl AsinA
7 6 ad2antrr ABcosA0cosB0sinA
8 sincl BsinB
9 8 ad2antlr ABcosA0cosB0sinB
10 7 9 mulcld ABcosA0cosB0sinAsinB
11 5 10 subeq0ad ABcosA0cosB0cosAcosBsinAsinB=0cosAcosB=sinAsinB
12 cosadd ABcosA+B=cosAcosBsinAsinB
13 12 adantr ABcosA0cosB0cosA+B=cosAcosBsinAsinB
14 13 eqeq1d ABcosA0cosB0cosA+B=0cosAcosBsinAsinB=0
15 tanval AcosA0tanA=sinAcosA
16 15 ad2ant2r ABcosA0cosB0tanA=sinAcosA
17 tanval BcosB0tanB=sinBcosB
18 17 ad2ant2l ABcosA0cosB0tanB=sinBcosB
19 16 18 oveq12d ABcosA0cosB0tanAtanB=sinAcosAsinBcosB
20 simprl ABcosA0cosB0cosA0
21 simprr ABcosA0cosB0cosB0
22 7 2 9 4 20 21 divmuldivd ABcosA0cosB0sinAcosAsinBcosB=sinAsinBcosAcosB
23 19 22 eqtrd ABcosA0cosB0tanAtanB=sinAsinBcosAcosB
24 23 eqeq1d ABcosA0cosB0tanAtanB=1sinAsinBcosAcosB=1
25 1cnd ABcosA0cosB01
26 2 4 20 21 mulne0d ABcosA0cosB0cosAcosB0
27 10 5 25 26 divmuld ABcosA0cosB0sinAsinBcosAcosB=1cosAcosB1=sinAsinB
28 5 mulridd ABcosA0cosB0cosAcosB1=cosAcosB
29 28 eqeq1d ABcosA0cosB0cosAcosB1=sinAsinBcosAcosB=sinAsinB
30 24 27 29 3bitrd ABcosA0cosB0tanAtanB=1cosAcosB=sinAsinB
31 11 14 30 3bitr4d ABcosA0cosB0cosA+B=0tanAtanB=1
32 31 necon3bid ABcosA0cosB0cosA+B0tanAtanB1