Metamath Proof Explorer


Theorem tanadd

Description: Addition formula for tangent. (Contributed by Mario Carneiro, 4-Apr-2015)

Ref Expression
Assertion tanadd ABcosA0cosB0cosA+B0tanA+B=tanA+tanB1tanAtanB

Proof

Step Hyp Ref Expression
1 addcl ABA+B
2 1 adantr ABcosA0cosB0cosA+B0A+B
3 simpr3 ABcosA0cosB0cosA+B0cosA+B0
4 tanval A+BcosA+B0tanA+B=sinA+BcosA+B
5 2 3 4 syl2anc ABcosA0cosB0cosA+B0tanA+B=sinA+BcosA+B
6 sinadd ABsinA+B=sinAcosB+cosAsinB
7 6 adantr ABcosA0cosB0cosA+B0sinA+B=sinAcosB+cosAsinB
8 cosadd ABcosA+B=cosAcosBsinAsinB
9 8 adantr ABcosA0cosB0cosA+B0cosA+B=cosAcosBsinAsinB
10 7 9 oveq12d ABcosA0cosB0cosA+B0sinA+BcosA+B=sinAcosB+cosAsinBcosAcosBsinAsinB
11 simpll ABcosA0cosB0cosA+B0A
12 11 coscld ABcosA0cosB0cosA+B0cosA
13 simplr ABcosA0cosB0cosA+B0B
14 13 coscld ABcosA0cosB0cosA+B0cosB
15 12 14 mulcld ABcosA0cosB0cosA+B0cosAcosB
16 simpr1 ABcosA0cosB0cosA+B0cosA0
17 11 16 tancld ABcosA0cosB0cosA+B0tanA
18 simpr2 ABcosA0cosB0cosA+B0cosB0
19 13 18 tancld ABcosA0cosB0cosA+B0tanB
20 15 17 19 adddid ABcosA0cosB0cosA+B0cosAcosBtanA+tanB=cosAcosBtanA+cosAcosBtanB
21 12 14 17 mul32d ABcosA0cosB0cosA+B0cosAcosBtanA=cosAtanAcosB
22 tanval AcosA0tanA=sinAcosA
23 11 16 22 syl2anc ABcosA0cosB0cosA+B0tanA=sinAcosA
24 23 oveq2d ABcosA0cosB0cosA+B0cosAtanA=cosAsinAcosA
25 11 sincld ABcosA0cosB0cosA+B0sinA
26 25 12 16 divcan2d ABcosA0cosB0cosA+B0cosAsinAcosA=sinA
27 24 26 eqtrd ABcosA0cosB0cosA+B0cosAtanA=sinA
28 27 oveq1d ABcosA0cosB0cosA+B0cosAtanAcosB=sinAcosB
29 21 28 eqtrd ABcosA0cosB0cosA+B0cosAcosBtanA=sinAcosB
30 12 14 19 mulassd ABcosA0cosB0cosA+B0cosAcosBtanB=cosAcosBtanB
31 tanval BcosB0tanB=sinBcosB
32 13 18 31 syl2anc ABcosA0cosB0cosA+B0tanB=sinBcosB
33 32 oveq2d ABcosA0cosB0cosA+B0cosBtanB=cosBsinBcosB
34 13 sincld ABcosA0cosB0cosA+B0sinB
35 34 14 18 divcan2d ABcosA0cosB0cosA+B0cosBsinBcosB=sinB
36 33 35 eqtrd ABcosA0cosB0cosA+B0cosBtanB=sinB
37 36 oveq2d ABcosA0cosB0cosA+B0cosAcosBtanB=cosAsinB
38 30 37 eqtrd ABcosA0cosB0cosA+B0cosAcosBtanB=cosAsinB
39 29 38 oveq12d ABcosA0cosB0cosA+B0cosAcosBtanA+cosAcosBtanB=sinAcosB+cosAsinB
40 20 39 eqtrd ABcosA0cosB0cosA+B0cosAcosBtanA+tanB=sinAcosB+cosAsinB
41 1cnd ABcosA0cosB0cosA+B01
42 17 19 mulcld ABcosA0cosB0cosA+B0tanAtanB
43 15 41 42 subdid ABcosA0cosB0cosA+B0cosAcosB1tanAtanB=cosAcosB1cosAcosBtanAtanB
44 15 mulridd ABcosA0cosB0cosA+B0cosAcosB1=cosAcosB
45 12 14 17 19 mul4d ABcosA0cosB0cosA+B0cosAcosBtanAtanB=cosAtanAcosBtanB
46 27 36 oveq12d ABcosA0cosB0cosA+B0cosAtanAcosBtanB=sinAsinB
47 45 46 eqtrd ABcosA0cosB0cosA+B0cosAcosBtanAtanB=sinAsinB
48 44 47 oveq12d ABcosA0cosB0cosA+B0cosAcosB1cosAcosBtanAtanB=cosAcosBsinAsinB
49 43 48 eqtrd ABcosA0cosB0cosA+B0cosAcosB1tanAtanB=cosAcosBsinAsinB
50 40 49 oveq12d ABcosA0cosB0cosA+B0cosAcosBtanA+tanBcosAcosB1tanAtanB=sinAcosB+cosAsinBcosAcosBsinAsinB
51 17 19 addcld ABcosA0cosB0cosA+B0tanA+tanB
52 ax-1cn 1
53 subcl 1tanAtanB1tanAtanB
54 52 42 53 sylancr ABcosA0cosB0cosA+B01tanAtanB
55 tanaddlem ABcosA0cosB0cosA+B0tanAtanB1
56 55 3adantr3 ABcosA0cosB0cosA+B0cosA+B0tanAtanB1
57 3 56 mpbid ABcosA0cosB0cosA+B0tanAtanB1
58 57 necomd ABcosA0cosB0cosA+B01tanAtanB
59 subeq0 1tanAtanB1tanAtanB=01=tanAtanB
60 59 necon3bid 1tanAtanB1tanAtanB01tanAtanB
61 52 42 60 sylancr ABcosA0cosB0cosA+B01tanAtanB01tanAtanB
62 58 61 mpbird ABcosA0cosB0cosA+B01tanAtanB0
63 12 14 16 18 mulne0d ABcosA0cosB0cosA+B0cosAcosB0
64 51 54 15 62 63 divcan5d ABcosA0cosB0cosA+B0cosAcosBtanA+tanBcosAcosB1tanAtanB=tanA+tanB1tanAtanB
65 10 50 64 3eqtr2rd ABcosA0cosB0cosA+B0tanA+tanB1tanAtanB=sinA+BcosA+B
66 5 65 eqtr4d ABcosA0cosB0cosA+B0tanA+B=tanA+tanB1tanAtanB