Description: Addition formula for tangent. (Contributed by Mario Carneiro, 4-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | tanadd | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | addcl | |
|
2 | 1 | adantr | |
3 | simpr3 | |
|
4 | tanval | |
|
5 | 2 3 4 | syl2anc | |
6 | sinadd | |
|
7 | 6 | adantr | |
8 | cosadd | |
|
9 | 8 | adantr | |
10 | 7 9 | oveq12d | |
11 | simpll | |
|
12 | 11 | coscld | |
13 | simplr | |
|
14 | 13 | coscld | |
15 | 12 14 | mulcld | |
16 | simpr1 | |
|
17 | 11 16 | tancld | |
18 | simpr2 | |
|
19 | 13 18 | tancld | |
20 | 15 17 19 | adddid | |
21 | 12 14 17 | mul32d | |
22 | tanval | |
|
23 | 11 16 22 | syl2anc | |
24 | 23 | oveq2d | |
25 | 11 | sincld | |
26 | 25 12 16 | divcan2d | |
27 | 24 26 | eqtrd | |
28 | 27 | oveq1d | |
29 | 21 28 | eqtrd | |
30 | 12 14 19 | mulassd | |
31 | tanval | |
|
32 | 13 18 31 | syl2anc | |
33 | 32 | oveq2d | |
34 | 13 | sincld | |
35 | 34 14 18 | divcan2d | |
36 | 33 35 | eqtrd | |
37 | 36 | oveq2d | |
38 | 30 37 | eqtrd | |
39 | 29 38 | oveq12d | |
40 | 20 39 | eqtrd | |
41 | 1cnd | |
|
42 | 17 19 | mulcld | |
43 | 15 41 42 | subdid | |
44 | 15 | mulridd | |
45 | 12 14 17 19 | mul4d | |
46 | 27 36 | oveq12d | |
47 | 45 46 | eqtrd | |
48 | 44 47 | oveq12d | |
49 | 43 48 | eqtrd | |
50 | 40 49 | oveq12d | |
51 | 17 19 | addcld | |
52 | ax-1cn | |
|
53 | subcl | |
|
54 | 52 42 53 | sylancr | |
55 | tanaddlem | |
|
56 | 55 | 3adantr3 | |
57 | 3 56 | mpbid | |
58 | 57 | necomd | |
59 | subeq0 | |
|
60 | 59 | necon3bid | |
61 | 52 42 60 | sylancr | |
62 | 58 61 | mpbird | |
63 | 12 14 16 18 | mulne0d | |
64 | 51 54 15 62 63 | divcan5d | |
65 | 10 50 64 | 3eqtr2rd | |
66 | 5 65 | eqtr4d | |