Metamath Proof Explorer


Theorem sinsub

Description: Sine of difference. (Contributed by Paul Chapman, 12-Oct-2007)

Ref Expression
Assertion sinsub ABsinAB=sinAcosBcosAsinB

Proof

Step Hyp Ref Expression
1 negcl BB
2 sinadd ABsinA+B=sinAcosB+cosAsinB
3 1 2 sylan2 ABsinA+B=sinAcosB+cosAsinB
4 negsub ABA+B=AB
5 4 fveq2d ABsinA+B=sinAB
6 cosneg BcosB=cosB
7 6 adantl ABcosB=cosB
8 7 oveq2d ABsinAcosB=sinAcosB
9 sinneg BsinB=sinB
10 9 adantl ABsinB=sinB
11 10 oveq2d ABcosAsinB=cosAsinB
12 coscl AcosA
13 sincl BsinB
14 mulneg2 cosAsinBcosAsinB=cosAsinB
15 12 13 14 syl2an ABcosAsinB=cosAsinB
16 11 15 eqtrd ABcosAsinB=cosAsinB
17 8 16 oveq12d ABsinAcosB+cosAsinB=sinAcosB+cosAsinB
18 sincl AsinA
19 coscl BcosB
20 mulcl sinAcosBsinAcosB
21 18 19 20 syl2an ABsinAcosB
22 mulcl cosAsinBcosAsinB
23 12 13 22 syl2an ABcosAsinB
24 21 23 negsubd ABsinAcosB+cosAsinB=sinAcosBcosAsinB
25 17 24 eqtrd ABsinAcosB+cosAsinB=sinAcosBcosAsinB
26 3 5 25 3eqtr3d ABsinAB=sinAcosBcosAsinB