Metamath Proof Explorer


Theorem cossub

Description: Cosine of difference. (Contributed by Paul Chapman, 12-Oct-2007)

Ref Expression
Assertion cossub ABcosAB=cosAcosB+sinAsinB

Proof

Step Hyp Ref Expression
1 negcl BB
2 cosadd ABcosA+B=cosAcosBsinAsinB
3 1 2 sylan2 ABcosA+B=cosAcosBsinAsinB
4 negsub ABA+B=AB
5 4 fveq2d ABcosA+B=cosAB
6 cosneg BcosB=cosB
7 6 adantl ABcosB=cosB
8 7 oveq2d ABcosAcosB=cosAcosB
9 sinneg BsinB=sinB
10 9 adantl ABsinB=sinB
11 10 oveq2d ABsinAsinB=sinAsinB
12 sincl AsinA
13 sincl BsinB
14 mulneg2 sinAsinBsinAsinB=sinAsinB
15 12 13 14 syl2an ABsinAsinB=sinAsinB
16 11 15 eqtrd ABsinAsinB=sinAsinB
17 8 16 oveq12d ABcosAcosBsinAsinB=cosAcosBsinAsinB
18 coscl AcosA
19 coscl BcosB
20 mulcl cosAcosBcosAcosB
21 18 19 20 syl2an ABcosAcosB
22 mulcl sinAsinBsinAsinB
23 12 13 22 syl2an ABsinAsinB
24 21 23 subnegd ABcosAcosBsinAsinB=cosAcosB+sinAsinB
25 17 24 eqtrd ABcosAcosBsinAsinB=cosAcosB+sinAsinB
26 3 5 25 3eqtr3d ABcosAB=cosAcosB+sinAsinB