| Step |
Hyp |
Ref |
Expression |
| 1 |
|
addcl |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) |
| 2 |
1
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( 𝐴 + 𝐵 ) ∈ ℂ ) |
| 3 |
|
simpr3 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) |
| 4 |
|
tanval |
⊢ ( ( ( 𝐴 + 𝐵 ) ∈ ℂ ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) → ( tan ‘ ( 𝐴 + 𝐵 ) ) = ( ( sin ‘ ( 𝐴 + 𝐵 ) ) / ( cos ‘ ( 𝐴 + 𝐵 ) ) ) ) |
| 5 |
2 3 4
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( tan ‘ ( 𝐴 + 𝐵 ) ) = ( ( sin ‘ ( 𝐴 + 𝐵 ) ) / ( cos ‘ ( 𝐴 + 𝐵 ) ) ) ) |
| 6 |
|
sinadd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( sin ‘ ( 𝐴 + 𝐵 ) ) = ( ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) |
| 7 |
6
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( sin ‘ ( 𝐴 + 𝐵 ) ) = ( ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) |
| 8 |
|
cosadd |
⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( cos ‘ ( 𝐴 + 𝐵 ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) |
| 9 |
8
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( cos ‘ ( 𝐴 + 𝐵 ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) |
| 10 |
7 9
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( ( sin ‘ ( 𝐴 + 𝐵 ) ) / ( cos ‘ ( 𝐴 + 𝐵 ) ) ) = ( ( ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) / ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) ) |
| 11 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → 𝐴 ∈ ℂ ) |
| 12 |
11
|
coscld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( cos ‘ 𝐴 ) ∈ ℂ ) |
| 13 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → 𝐵 ∈ ℂ ) |
| 14 |
13
|
coscld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( cos ‘ 𝐵 ) ∈ ℂ ) |
| 15 |
12 14
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ∈ ℂ ) |
| 16 |
|
simpr1 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( cos ‘ 𝐴 ) ≠ 0 ) |
| 17 |
11 16
|
tancld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( tan ‘ 𝐴 ) ∈ ℂ ) |
| 18 |
|
simpr2 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( cos ‘ 𝐵 ) ≠ 0 ) |
| 19 |
13 18
|
tancld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( tan ‘ 𝐵 ) ∈ ℂ ) |
| 20 |
15 17 19
|
adddid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) · ( ( tan ‘ 𝐴 ) + ( tan ‘ 𝐵 ) ) ) = ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) · ( tan ‘ 𝐴 ) ) + ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) · ( tan ‘ 𝐵 ) ) ) ) |
| 21 |
12 14 17
|
mul32d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) · ( tan ‘ 𝐴 ) ) = ( ( ( cos ‘ 𝐴 ) · ( tan ‘ 𝐴 ) ) · ( cos ‘ 𝐵 ) ) ) |
| 22 |
|
tanval |
⊢ ( ( 𝐴 ∈ ℂ ∧ ( cos ‘ 𝐴 ) ≠ 0 ) → ( tan ‘ 𝐴 ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
| 23 |
11 16 22
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( tan ‘ 𝐴 ) = ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) |
| 24 |
23
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( ( cos ‘ 𝐴 ) · ( tan ‘ 𝐴 ) ) = ( ( cos ‘ 𝐴 ) · ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) ) |
| 25 |
11
|
sincld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( sin ‘ 𝐴 ) ∈ ℂ ) |
| 26 |
25 12 16
|
divcan2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( ( cos ‘ 𝐴 ) · ( ( sin ‘ 𝐴 ) / ( cos ‘ 𝐴 ) ) ) = ( sin ‘ 𝐴 ) ) |
| 27 |
24 26
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( ( cos ‘ 𝐴 ) · ( tan ‘ 𝐴 ) ) = ( sin ‘ 𝐴 ) ) |
| 28 |
27
|
oveq1d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( ( ( cos ‘ 𝐴 ) · ( tan ‘ 𝐴 ) ) · ( cos ‘ 𝐵 ) ) = ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ) |
| 29 |
21 28
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) · ( tan ‘ 𝐴 ) ) = ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ) |
| 30 |
12 14 19
|
mulassd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) · ( tan ‘ 𝐵 ) ) = ( ( cos ‘ 𝐴 ) · ( ( cos ‘ 𝐵 ) · ( tan ‘ 𝐵 ) ) ) ) |
| 31 |
|
tanval |
⊢ ( ( 𝐵 ∈ ℂ ∧ ( cos ‘ 𝐵 ) ≠ 0 ) → ( tan ‘ 𝐵 ) = ( ( sin ‘ 𝐵 ) / ( cos ‘ 𝐵 ) ) ) |
| 32 |
13 18 31
|
syl2anc |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( tan ‘ 𝐵 ) = ( ( sin ‘ 𝐵 ) / ( cos ‘ 𝐵 ) ) ) |
| 33 |
32
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( ( cos ‘ 𝐵 ) · ( tan ‘ 𝐵 ) ) = ( ( cos ‘ 𝐵 ) · ( ( sin ‘ 𝐵 ) / ( cos ‘ 𝐵 ) ) ) ) |
| 34 |
13
|
sincld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( sin ‘ 𝐵 ) ∈ ℂ ) |
| 35 |
34 14 18
|
divcan2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( ( cos ‘ 𝐵 ) · ( ( sin ‘ 𝐵 ) / ( cos ‘ 𝐵 ) ) ) = ( sin ‘ 𝐵 ) ) |
| 36 |
33 35
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( ( cos ‘ 𝐵 ) · ( tan ‘ 𝐵 ) ) = ( sin ‘ 𝐵 ) ) |
| 37 |
36
|
oveq2d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( ( cos ‘ 𝐴 ) · ( ( cos ‘ 𝐵 ) · ( tan ‘ 𝐵 ) ) ) = ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) |
| 38 |
30 37
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) · ( tan ‘ 𝐵 ) ) = ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) |
| 39 |
29 38
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) · ( tan ‘ 𝐴 ) ) + ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) · ( tan ‘ 𝐵 ) ) ) = ( ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) |
| 40 |
20 39
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) · ( ( tan ‘ 𝐴 ) + ( tan ‘ 𝐵 ) ) ) = ( ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) |
| 41 |
|
1cnd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → 1 ∈ ℂ ) |
| 42 |
17 19
|
mulcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( ( tan ‘ 𝐴 ) · ( tan ‘ 𝐵 ) ) ∈ ℂ ) |
| 43 |
15 41 42
|
subdid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) · ( 1 − ( ( tan ‘ 𝐴 ) · ( tan ‘ 𝐵 ) ) ) ) = ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) · 1 ) − ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) · ( ( tan ‘ 𝐴 ) · ( tan ‘ 𝐵 ) ) ) ) ) |
| 44 |
15
|
mulridd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) · 1 ) = ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ) |
| 45 |
12 14 17 19
|
mul4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) · ( ( tan ‘ 𝐴 ) · ( tan ‘ 𝐵 ) ) ) = ( ( ( cos ‘ 𝐴 ) · ( tan ‘ 𝐴 ) ) · ( ( cos ‘ 𝐵 ) · ( tan ‘ 𝐵 ) ) ) ) |
| 46 |
27 36
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( ( ( cos ‘ 𝐴 ) · ( tan ‘ 𝐴 ) ) · ( ( cos ‘ 𝐵 ) · ( tan ‘ 𝐵 ) ) ) = ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) |
| 47 |
45 46
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) · ( ( tan ‘ 𝐴 ) · ( tan ‘ 𝐵 ) ) ) = ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) |
| 48 |
44 47
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) · 1 ) − ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) · ( ( tan ‘ 𝐴 ) · ( tan ‘ 𝐵 ) ) ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) |
| 49 |
43 48
|
eqtrd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) · ( 1 − ( ( tan ‘ 𝐴 ) · ( tan ‘ 𝐵 ) ) ) ) = ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) |
| 50 |
40 49
|
oveq12d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) · ( ( tan ‘ 𝐴 ) + ( tan ‘ 𝐵 ) ) ) / ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) · ( 1 − ( ( tan ‘ 𝐴 ) · ( tan ‘ 𝐵 ) ) ) ) ) = ( ( ( ( sin ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) + ( ( cos ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) / ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) − ( ( sin ‘ 𝐴 ) · ( sin ‘ 𝐵 ) ) ) ) ) |
| 51 |
17 19
|
addcld |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( ( tan ‘ 𝐴 ) + ( tan ‘ 𝐵 ) ) ∈ ℂ ) |
| 52 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
| 53 |
|
subcl |
⊢ ( ( 1 ∈ ℂ ∧ ( ( tan ‘ 𝐴 ) · ( tan ‘ 𝐵 ) ) ∈ ℂ ) → ( 1 − ( ( tan ‘ 𝐴 ) · ( tan ‘ 𝐵 ) ) ) ∈ ℂ ) |
| 54 |
52 42 53
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( 1 − ( ( tan ‘ 𝐴 ) · ( tan ‘ 𝐵 ) ) ) ∈ ℂ ) |
| 55 |
|
tanaddlem |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ) ) → ( ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ↔ ( ( tan ‘ 𝐴 ) · ( tan ‘ 𝐵 ) ) ≠ 1 ) ) |
| 56 |
55
|
3adantr3 |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ↔ ( ( tan ‘ 𝐴 ) · ( tan ‘ 𝐵 ) ) ≠ 1 ) ) |
| 57 |
3 56
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( ( tan ‘ 𝐴 ) · ( tan ‘ 𝐵 ) ) ≠ 1 ) |
| 58 |
57
|
necomd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → 1 ≠ ( ( tan ‘ 𝐴 ) · ( tan ‘ 𝐵 ) ) ) |
| 59 |
|
subeq0 |
⊢ ( ( 1 ∈ ℂ ∧ ( ( tan ‘ 𝐴 ) · ( tan ‘ 𝐵 ) ) ∈ ℂ ) → ( ( 1 − ( ( tan ‘ 𝐴 ) · ( tan ‘ 𝐵 ) ) ) = 0 ↔ 1 = ( ( tan ‘ 𝐴 ) · ( tan ‘ 𝐵 ) ) ) ) |
| 60 |
59
|
necon3bid |
⊢ ( ( 1 ∈ ℂ ∧ ( ( tan ‘ 𝐴 ) · ( tan ‘ 𝐵 ) ) ∈ ℂ ) → ( ( 1 − ( ( tan ‘ 𝐴 ) · ( tan ‘ 𝐵 ) ) ) ≠ 0 ↔ 1 ≠ ( ( tan ‘ 𝐴 ) · ( tan ‘ 𝐵 ) ) ) ) |
| 61 |
52 42 60
|
sylancr |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( ( 1 − ( ( tan ‘ 𝐴 ) · ( tan ‘ 𝐵 ) ) ) ≠ 0 ↔ 1 ≠ ( ( tan ‘ 𝐴 ) · ( tan ‘ 𝐵 ) ) ) ) |
| 62 |
58 61
|
mpbird |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( 1 − ( ( tan ‘ 𝐴 ) · ( tan ‘ 𝐵 ) ) ) ≠ 0 ) |
| 63 |
12 14 16 18
|
mulne0d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) ≠ 0 ) |
| 64 |
51 54 15 62 63
|
divcan5d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) · ( ( tan ‘ 𝐴 ) + ( tan ‘ 𝐵 ) ) ) / ( ( ( cos ‘ 𝐴 ) · ( cos ‘ 𝐵 ) ) · ( 1 − ( ( tan ‘ 𝐴 ) · ( tan ‘ 𝐵 ) ) ) ) ) = ( ( ( tan ‘ 𝐴 ) + ( tan ‘ 𝐵 ) ) / ( 1 − ( ( tan ‘ 𝐴 ) · ( tan ‘ 𝐵 ) ) ) ) ) |
| 65 |
10 50 64
|
3eqtr2rd |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( ( ( tan ‘ 𝐴 ) + ( tan ‘ 𝐵 ) ) / ( 1 − ( ( tan ‘ 𝐴 ) · ( tan ‘ 𝐵 ) ) ) ) = ( ( sin ‘ ( 𝐴 + 𝐵 ) ) / ( cos ‘ ( 𝐴 + 𝐵 ) ) ) ) |
| 66 |
5 65
|
eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) ∧ ( ( cos ‘ 𝐴 ) ≠ 0 ∧ ( cos ‘ 𝐵 ) ≠ 0 ∧ ( cos ‘ ( 𝐴 + 𝐵 ) ) ≠ 0 ) ) → ( tan ‘ ( 𝐴 + 𝐵 ) ) = ( ( ( tan ‘ 𝐴 ) + ( tan ‘ 𝐵 ) ) / ( 1 − ( ( tan ‘ 𝐴 ) · ( tan ‘ 𝐵 ) ) ) ) ) |