| Step |
Hyp |
Ref |
Expression |
| 1 |
|
coshalfpi |
⊢ ( cos ‘ ( π / 2 ) ) = 0 |
| 2 |
1
|
oveq1i |
⊢ ( ( cos ‘ ( π / 2 ) ) · ( cos ‘ 𝐴 ) ) = ( 0 · ( cos ‘ 𝐴 ) ) |
| 3 |
|
coscl |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ 𝐴 ) ∈ ℂ ) |
| 4 |
3
|
mul02d |
⊢ ( 𝐴 ∈ ℂ → ( 0 · ( cos ‘ 𝐴 ) ) = 0 ) |
| 5 |
2 4
|
eqtrid |
⊢ ( 𝐴 ∈ ℂ → ( ( cos ‘ ( π / 2 ) ) · ( cos ‘ 𝐴 ) ) = 0 ) |
| 6 |
|
sinhalfpi |
⊢ ( sin ‘ ( π / 2 ) ) = 1 |
| 7 |
6
|
oveq1i |
⊢ ( ( sin ‘ ( π / 2 ) ) · ( sin ‘ 𝐴 ) ) = ( 1 · ( sin ‘ 𝐴 ) ) |
| 8 |
|
sincl |
⊢ ( 𝐴 ∈ ℂ → ( sin ‘ 𝐴 ) ∈ ℂ ) |
| 9 |
8
|
mullidd |
⊢ ( 𝐴 ∈ ℂ → ( 1 · ( sin ‘ 𝐴 ) ) = ( sin ‘ 𝐴 ) ) |
| 10 |
7 9
|
eqtrid |
⊢ ( 𝐴 ∈ ℂ → ( ( sin ‘ ( π / 2 ) ) · ( sin ‘ 𝐴 ) ) = ( sin ‘ 𝐴 ) ) |
| 11 |
5 10
|
oveq12d |
⊢ ( 𝐴 ∈ ℂ → ( ( ( cos ‘ ( π / 2 ) ) · ( cos ‘ 𝐴 ) ) − ( ( sin ‘ ( π / 2 ) ) · ( sin ‘ 𝐴 ) ) ) = ( 0 − ( sin ‘ 𝐴 ) ) ) |
| 12 |
|
halfpire |
⊢ ( π / 2 ) ∈ ℝ |
| 13 |
12
|
recni |
⊢ ( π / 2 ) ∈ ℂ |
| 14 |
|
cosadd |
⊢ ( ( ( π / 2 ) ∈ ℂ ∧ 𝐴 ∈ ℂ ) → ( cos ‘ ( ( π / 2 ) + 𝐴 ) ) = ( ( ( cos ‘ ( π / 2 ) ) · ( cos ‘ 𝐴 ) ) − ( ( sin ‘ ( π / 2 ) ) · ( sin ‘ 𝐴 ) ) ) ) |
| 15 |
13 14
|
mpan |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( ( π / 2 ) + 𝐴 ) ) = ( ( ( cos ‘ ( π / 2 ) ) · ( cos ‘ 𝐴 ) ) − ( ( sin ‘ ( π / 2 ) ) · ( sin ‘ 𝐴 ) ) ) ) |
| 16 |
|
df-neg |
⊢ - ( sin ‘ 𝐴 ) = ( 0 − ( sin ‘ 𝐴 ) ) |
| 17 |
16
|
a1i |
⊢ ( 𝐴 ∈ ℂ → - ( sin ‘ 𝐴 ) = ( 0 − ( sin ‘ 𝐴 ) ) ) |
| 18 |
11 15 17
|
3eqtr4d |
⊢ ( 𝐴 ∈ ℂ → ( cos ‘ ( ( π / 2 ) + 𝐴 ) ) = - ( sin ‘ 𝐴 ) ) |