Metamath Proof Explorer


Theorem sinmpi

Description: Sine of a number less _pi . (Contributed by Paul Chapman, 15-Mar-2008)

Ref Expression
Assertion sinmpi AsinAπ=sinA

Proof

Step Hyp Ref Expression
1 picn π
2 sinsub AπsinAπ=sinAcosπcosAsinπ
3 1 2 mpan2 AsinAπ=sinAcosπcosAsinπ
4 cospi cosπ=1
5 4 oveq2i sinAcosπ=sinA-1
6 sincl AsinA
7 neg1cn 1
8 mulcom sinA1sinA-1=-1sinA
9 7 8 mpan2 sinAsinA-1=-1sinA
10 mulm1 sinA-1sinA=sinA
11 9 10 eqtrd sinAsinA-1=sinA
12 6 11 syl AsinA-1=sinA
13 5 12 eqtrid AsinAcosπ=sinA
14 sinpi sinπ=0
15 14 oveq2i cosAsinπ=cosA0
16 coscl AcosA
17 16 mul01d AcosA0=0
18 15 17 eqtrid AcosAsinπ=0
19 13 18 oveq12d AsinAcosπcosAsinπ=-sinA-0
20 6 negcld AsinA
21 20 subid1d A-sinA-0=sinA
22 19 21 eqtrd AsinAcosπcosAsinπ=sinA
23 3 22 eqtrd AsinAπ=sinA