Metamath Proof Explorer


Theorem sleadd1d

Description: Addition to both sides of surreal less-than or equal. Theorem 5 of Conway p. 18. (Contributed by Scott Fenton, 21-Jan-2025)

Ref Expression
Hypotheses addscand.1 φANo
addscand.2 φBNo
addscand.3 φCNo
Assertion sleadd1d Could not format assertion : No typesetting found for |- ( ph -> ( A <_s B <-> ( A +s C ) <_s ( B +s C ) ) ) with typecode |-

Proof

Step Hyp Ref Expression
1 addscand.1 φANo
2 addscand.2 φBNo
3 addscand.3 φCNo
4 sleadd1 Could not format ( ( A e. No /\ B e. No /\ C e. No ) -> ( A <_s B <-> ( A +s C ) <_s ( B +s C ) ) ) : No typesetting found for |- ( ( A e. No /\ B e. No /\ C e. No ) -> ( A <_s B <-> ( A +s C ) <_s ( B +s C ) ) ) with typecode |-
5 1 2 3 4 syl3anc Could not format ( ph -> ( A <_s B <-> ( A +s C ) <_s ( B +s C ) ) ) : No typesetting found for |- ( ph -> ( A <_s B <-> ( A +s C ) <_s ( B +s C ) ) ) with typecode |-