Metamath Proof Explorer


Theorem slelttrd

Description: Surreal less-than is transitive. (Contributed by Scott Fenton, 8-Dec-2021)

Ref Expression
Hypotheses slttrd.1 φANo
slttrd.2 φBNo
slttrd.3 φCNo
slelttrd.4 φAsB
slelttrd.5 φB<sC
Assertion slelttrd φA<sC

Proof

Step Hyp Ref Expression
1 slttrd.1 φANo
2 slttrd.2 φBNo
3 slttrd.3 φCNo
4 slelttrd.4 φAsB
5 slelttrd.5 φB<sC
6 slelttr ANoBNoCNoAsBB<sCA<sC
7 1 2 3 6 syl3anc φAsBB<sCA<sC
8 4 5 7 mp2and φA<sC