Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Thierry Arnoux
Algebra
Semiring left modules
slmd0cl
Metamath Proof Explorer
Description: The ring zero in a semimodule belongs to the ring base set.
(Contributed by NM , 11-Jan-2014) (Revised by Mario Carneiro , 19-Jun-2014) (Revised by Thierry Arnoux , 1-Apr-2018)
Ref
Expression
Hypotheses
slmd0cl.f
⊢ F = Scalar ⁡ W
slmd0cl.k
⊢ K = Base F
slmd0cl.z
⊢ 0 ˙ = 0 F
Assertion
slmd0cl
⊢ W ∈ SLMod → 0 ˙ ∈ K
Proof
Step
Hyp
Ref
Expression
1
slmd0cl.f
⊢ F = Scalar ⁡ W
2
slmd0cl.k
⊢ K = Base F
3
slmd0cl.z
⊢ 0 ˙ = 0 F
4
1
slmdsrg
⊢ W ∈ SLMod → F ∈ SRing
5
2 3
srg0cl
⊢ F ∈ SRing → 0 ˙ ∈ K
6
4 5
syl
⊢ W ∈ SLMod → 0 ˙ ∈ K