Metamath Proof Explorer


Theorem slmd0cl

Description: The ring zero in a semimodule belongs to the ring base set. (Contributed by NM, 11-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses slmd0cl.f F = Scalar W
slmd0cl.k K = Base F
slmd0cl.z 0 ˙ = 0 F
Assertion slmd0cl W SLMod 0 ˙ K

Proof

Step Hyp Ref Expression
1 slmd0cl.f F = Scalar W
2 slmd0cl.k K = Base F
3 slmd0cl.z 0 ˙ = 0 F
4 1 slmdsrg W SLMod F SRing
5 2 3 srg0cl F SRing 0 ˙ K
6 4 5 syl W SLMod 0 ˙ K