Metamath Proof Explorer


Theorem slmd0vcl

Description: The zero vector is a vector. ( ax-hv0cl analog.) (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses slmd0vcl.v V = Base W
slmd0vcl.z 0 ˙ = 0 W
Assertion slmd0vcl W SLMod 0 ˙ V

Proof

Step Hyp Ref Expression
1 slmd0vcl.v V = Base W
2 slmd0vcl.z 0 ˙ = 0 W
3 slmdmnd W SLMod W Mnd
4 1 2 mndidcl W Mnd 0 ˙ V
5 3 4 syl W SLMod 0 ˙ V