Metamath Proof Explorer


Theorem slmdvs1

Description: Scalar product with ring unity. ( ax-hvmulid analog.) (Contributed by NM, 10-Jan-2014) (Revised by Mario Carneiro, 19-Jun-2014) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses slmdvs1.v V=BaseW
slmdvs1.f F=ScalarW
slmdvs1.s ·˙=W
slmdvs1.u 1˙=1F
Assertion slmdvs1 WSLModXV1˙·˙X=X

Proof

Step Hyp Ref Expression
1 slmdvs1.v V=BaseW
2 slmdvs1.f F=ScalarW
3 slmdvs1.s ·˙=W
4 slmdvs1.u 1˙=1F
5 simpl WSLModXVWSLMod
6 eqid BaseF=BaseF
7 2 6 4 slmd1cl WSLMod1˙BaseF
8 7 adantr WSLModXV1˙BaseF
9 simpr WSLModXVXV
10 eqid +W=+W
11 eqid 0W=0W
12 eqid +F=+F
13 eqid F=F
14 eqid 0F=0F
15 1 10 3 11 2 6 12 13 4 14 slmdlema WSLMod1˙BaseF1˙BaseFXVXV1˙·˙XV1˙·˙X+WX=1˙·˙X+W1˙·˙X1˙+F1˙·˙X=1˙·˙X+W1˙·˙X1˙F1˙·˙X=1˙·˙1˙·˙X1˙·˙X=X0F·˙X=0W
16 15 simprd WSLMod1˙BaseF1˙BaseFXVXV1˙F1˙·˙X=1˙·˙1˙·˙X1˙·˙X=X0F·˙X=0W
17 16 simp2d WSLMod1˙BaseF1˙BaseFXVXV1˙·˙X=X
18 5 8 8 9 9 17 syl122anc WSLModXV1˙·˙X=X