| Step | Hyp | Ref | Expression | 
						
							| 1 |  | slmdvs1.v | ⊢ 𝑉  =  ( Base ‘ 𝑊 ) | 
						
							| 2 |  | slmdvs1.f | ⊢ 𝐹  =  ( Scalar ‘ 𝑊 ) | 
						
							| 3 |  | slmdvs1.s | ⊢  ·   =  (  ·𝑠  ‘ 𝑊 ) | 
						
							| 4 |  | slmdvs1.u | ⊢  1   =  ( 1r ‘ 𝐹 ) | 
						
							| 5 |  | simpl | ⊢ ( ( 𝑊  ∈  SLMod  ∧  𝑋  ∈  𝑉 )  →  𝑊  ∈  SLMod ) | 
						
							| 6 |  | eqid | ⊢ ( Base ‘ 𝐹 )  =  ( Base ‘ 𝐹 ) | 
						
							| 7 | 2 6 4 | slmd1cl | ⊢ ( 𝑊  ∈  SLMod  →   1   ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 8 | 7 | adantr | ⊢ ( ( 𝑊  ∈  SLMod  ∧  𝑋  ∈  𝑉 )  →   1   ∈  ( Base ‘ 𝐹 ) ) | 
						
							| 9 |  | simpr | ⊢ ( ( 𝑊  ∈  SLMod  ∧  𝑋  ∈  𝑉 )  →  𝑋  ∈  𝑉 ) | 
						
							| 10 |  | eqid | ⊢ ( +g ‘ 𝑊 )  =  ( +g ‘ 𝑊 ) | 
						
							| 11 |  | eqid | ⊢ ( 0g ‘ 𝑊 )  =  ( 0g ‘ 𝑊 ) | 
						
							| 12 |  | eqid | ⊢ ( +g ‘ 𝐹 )  =  ( +g ‘ 𝐹 ) | 
						
							| 13 |  | eqid | ⊢ ( .r ‘ 𝐹 )  =  ( .r ‘ 𝐹 ) | 
						
							| 14 |  | eqid | ⊢ ( 0g ‘ 𝐹 )  =  ( 0g ‘ 𝐹 ) | 
						
							| 15 | 1 10 3 11 2 6 12 13 4 14 | slmdlema | ⊢ ( ( 𝑊  ∈  SLMod  ∧  (  1   ∈  ( Base ‘ 𝐹 )  ∧   1   ∈  ( Base ‘ 𝐹 ) )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑋  ∈  𝑉 ) )  →  ( ( (  1   ·  𝑋 )  ∈  𝑉  ∧  (  1   ·  ( 𝑋 ( +g ‘ 𝑊 ) 𝑋 ) )  =  ( (  1   ·  𝑋 ) ( +g ‘ 𝑊 ) (  1   ·  𝑋 ) )  ∧  ( (  1  ( +g ‘ 𝐹 )  1  )  ·  𝑋 )  =  ( (  1   ·  𝑋 ) ( +g ‘ 𝑊 ) (  1   ·  𝑋 ) ) )  ∧  ( ( (  1  ( .r ‘ 𝐹 )  1  )  ·  𝑋 )  =  (  1   ·  (  1   ·  𝑋 ) )  ∧  (  1   ·  𝑋 )  =  𝑋  ∧  ( ( 0g ‘ 𝐹 )  ·  𝑋 )  =  ( 0g ‘ 𝑊 ) ) ) ) | 
						
							| 16 | 15 | simprd | ⊢ ( ( 𝑊  ∈  SLMod  ∧  (  1   ∈  ( Base ‘ 𝐹 )  ∧   1   ∈  ( Base ‘ 𝐹 ) )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑋  ∈  𝑉 ) )  →  ( ( (  1  ( .r ‘ 𝐹 )  1  )  ·  𝑋 )  =  (  1   ·  (  1   ·  𝑋 ) )  ∧  (  1   ·  𝑋 )  =  𝑋  ∧  ( ( 0g ‘ 𝐹 )  ·  𝑋 )  =  ( 0g ‘ 𝑊 ) ) ) | 
						
							| 17 | 16 | simp2d | ⊢ ( ( 𝑊  ∈  SLMod  ∧  (  1   ∈  ( Base ‘ 𝐹 )  ∧   1   ∈  ( Base ‘ 𝐹 ) )  ∧  ( 𝑋  ∈  𝑉  ∧  𝑋  ∈  𝑉 ) )  →  (  1   ·  𝑋 )  =  𝑋 ) | 
						
							| 18 | 5 8 8 9 9 17 | syl122anc | ⊢ ( ( 𝑊  ∈  SLMod  ∧  𝑋  ∈  𝑉 )  →  (  1   ·  𝑋 )  =  𝑋 ) |