Step |
Hyp |
Ref |
Expression |
1 |
|
slmdvs1.v |
⊢ 𝑉 = ( Base ‘ 𝑊 ) |
2 |
|
slmdvs1.f |
⊢ 𝐹 = ( Scalar ‘ 𝑊 ) |
3 |
|
slmdvs1.s |
⊢ · = ( ·𝑠 ‘ 𝑊 ) |
4 |
|
slmdvs1.u |
⊢ 1 = ( 1r ‘ 𝐹 ) |
5 |
|
simpl |
⊢ ( ( 𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉 ) → 𝑊 ∈ SLMod ) |
6 |
|
eqid |
⊢ ( Base ‘ 𝐹 ) = ( Base ‘ 𝐹 ) |
7 |
2 6 4
|
slmd1cl |
⊢ ( 𝑊 ∈ SLMod → 1 ∈ ( Base ‘ 𝐹 ) ) |
8 |
7
|
adantr |
⊢ ( ( 𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉 ) → 1 ∈ ( Base ‘ 𝐹 ) ) |
9 |
|
simpr |
⊢ ( ( 𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉 ) → 𝑋 ∈ 𝑉 ) |
10 |
|
eqid |
⊢ ( +g ‘ 𝑊 ) = ( +g ‘ 𝑊 ) |
11 |
|
eqid |
⊢ ( 0g ‘ 𝑊 ) = ( 0g ‘ 𝑊 ) |
12 |
|
eqid |
⊢ ( +g ‘ 𝐹 ) = ( +g ‘ 𝐹 ) |
13 |
|
eqid |
⊢ ( .r ‘ 𝐹 ) = ( .r ‘ 𝐹 ) |
14 |
|
eqid |
⊢ ( 0g ‘ 𝐹 ) = ( 0g ‘ 𝐹 ) |
15 |
1 10 3 11 2 6 12 13 4 14
|
slmdlema |
⊢ ( ( 𝑊 ∈ SLMod ∧ ( 1 ∈ ( Base ‘ 𝐹 ) ∧ 1 ∈ ( Base ‘ 𝐹 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( ( 1 · 𝑋 ) ∈ 𝑉 ∧ ( 1 · ( 𝑋 ( +g ‘ 𝑊 ) 𝑋 ) ) = ( ( 1 · 𝑋 ) ( +g ‘ 𝑊 ) ( 1 · 𝑋 ) ) ∧ ( ( 1 ( +g ‘ 𝐹 ) 1 ) · 𝑋 ) = ( ( 1 · 𝑋 ) ( +g ‘ 𝑊 ) ( 1 · 𝑋 ) ) ) ∧ ( ( ( 1 ( .r ‘ 𝐹 ) 1 ) · 𝑋 ) = ( 1 · ( 1 · 𝑋 ) ) ∧ ( 1 · 𝑋 ) = 𝑋 ∧ ( ( 0g ‘ 𝐹 ) · 𝑋 ) = ( 0g ‘ 𝑊 ) ) ) ) |
16 |
15
|
simprd |
⊢ ( ( 𝑊 ∈ SLMod ∧ ( 1 ∈ ( Base ‘ 𝐹 ) ∧ 1 ∈ ( Base ‘ 𝐹 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( ( ( 1 ( .r ‘ 𝐹 ) 1 ) · 𝑋 ) = ( 1 · ( 1 · 𝑋 ) ) ∧ ( 1 · 𝑋 ) = 𝑋 ∧ ( ( 0g ‘ 𝐹 ) · 𝑋 ) = ( 0g ‘ 𝑊 ) ) ) |
17 |
16
|
simp2d |
⊢ ( ( 𝑊 ∈ SLMod ∧ ( 1 ∈ ( Base ‘ 𝐹 ) ∧ 1 ∈ ( Base ‘ 𝐹 ) ) ∧ ( 𝑋 ∈ 𝑉 ∧ 𝑋 ∈ 𝑉 ) ) → ( 1 · 𝑋 ) = 𝑋 ) |
18 |
5 8 8 9 9 17
|
syl122anc |
⊢ ( ( 𝑊 ∈ SLMod ∧ 𝑋 ∈ 𝑉 ) → ( 1 · 𝑋 ) = 𝑋 ) |