Step |
Hyp |
Ref |
Expression |
1 |
|
slmdvs1.v |
|- V = ( Base ` W ) |
2 |
|
slmdvs1.f |
|- F = ( Scalar ` W ) |
3 |
|
slmdvs1.s |
|- .x. = ( .s ` W ) |
4 |
|
slmdvs1.u |
|- .1. = ( 1r ` F ) |
5 |
|
simpl |
|- ( ( W e. SLMod /\ X e. V ) -> W e. SLMod ) |
6 |
|
eqid |
|- ( Base ` F ) = ( Base ` F ) |
7 |
2 6 4
|
slmd1cl |
|- ( W e. SLMod -> .1. e. ( Base ` F ) ) |
8 |
7
|
adantr |
|- ( ( W e. SLMod /\ X e. V ) -> .1. e. ( Base ` F ) ) |
9 |
|
simpr |
|- ( ( W e. SLMod /\ X e. V ) -> X e. V ) |
10 |
|
eqid |
|- ( +g ` W ) = ( +g ` W ) |
11 |
|
eqid |
|- ( 0g ` W ) = ( 0g ` W ) |
12 |
|
eqid |
|- ( +g ` F ) = ( +g ` F ) |
13 |
|
eqid |
|- ( .r ` F ) = ( .r ` F ) |
14 |
|
eqid |
|- ( 0g ` F ) = ( 0g ` F ) |
15 |
1 10 3 11 2 6 12 13 4 14
|
slmdlema |
|- ( ( W e. SLMod /\ ( .1. e. ( Base ` F ) /\ .1. e. ( Base ` F ) ) /\ ( X e. V /\ X e. V ) ) -> ( ( ( .1. .x. X ) e. V /\ ( .1. .x. ( X ( +g ` W ) X ) ) = ( ( .1. .x. X ) ( +g ` W ) ( .1. .x. X ) ) /\ ( ( .1. ( +g ` F ) .1. ) .x. X ) = ( ( .1. .x. X ) ( +g ` W ) ( .1. .x. X ) ) ) /\ ( ( ( .1. ( .r ` F ) .1. ) .x. X ) = ( .1. .x. ( .1. .x. X ) ) /\ ( .1. .x. X ) = X /\ ( ( 0g ` F ) .x. X ) = ( 0g ` W ) ) ) ) |
16 |
15
|
simprd |
|- ( ( W e. SLMod /\ ( .1. e. ( Base ` F ) /\ .1. e. ( Base ` F ) ) /\ ( X e. V /\ X e. V ) ) -> ( ( ( .1. ( .r ` F ) .1. ) .x. X ) = ( .1. .x. ( .1. .x. X ) ) /\ ( .1. .x. X ) = X /\ ( ( 0g ` F ) .x. X ) = ( 0g ` W ) ) ) |
17 |
16
|
simp2d |
|- ( ( W e. SLMod /\ ( .1. e. ( Base ` F ) /\ .1. e. ( Base ` F ) ) /\ ( X e. V /\ X e. V ) ) -> ( .1. .x. X ) = X ) |
18 |
5 8 8 9 9 17
|
syl122anc |
|- ( ( W e. SLMod /\ X e. V ) -> ( .1. .x. X ) = X ) |