| Step | Hyp | Ref | Expression | 
						
							| 1 |  | slmdvs1.v |  |-  V = ( Base ` W ) | 
						
							| 2 |  | slmdvs1.f |  |-  F = ( Scalar ` W ) | 
						
							| 3 |  | slmdvs1.s |  |-  .x. = ( .s ` W ) | 
						
							| 4 |  | slmdvs1.u |  |-  .1. = ( 1r ` F ) | 
						
							| 5 |  | simpl |  |-  ( ( W e. SLMod /\ X e. V ) -> W e. SLMod ) | 
						
							| 6 |  | eqid |  |-  ( Base ` F ) = ( Base ` F ) | 
						
							| 7 | 2 6 4 | slmd1cl |  |-  ( W e. SLMod -> .1. e. ( Base ` F ) ) | 
						
							| 8 | 7 | adantr |  |-  ( ( W e. SLMod /\ X e. V ) -> .1. e. ( Base ` F ) ) | 
						
							| 9 |  | simpr |  |-  ( ( W e. SLMod /\ X e. V ) -> X e. V ) | 
						
							| 10 |  | eqid |  |-  ( +g ` W ) = ( +g ` W ) | 
						
							| 11 |  | eqid |  |-  ( 0g ` W ) = ( 0g ` W ) | 
						
							| 12 |  | eqid |  |-  ( +g ` F ) = ( +g ` F ) | 
						
							| 13 |  | eqid |  |-  ( .r ` F ) = ( .r ` F ) | 
						
							| 14 |  | eqid |  |-  ( 0g ` F ) = ( 0g ` F ) | 
						
							| 15 | 1 10 3 11 2 6 12 13 4 14 | slmdlema |  |-  ( ( W e. SLMod /\ ( .1. e. ( Base ` F ) /\ .1. e. ( Base ` F ) ) /\ ( X e. V /\ X e. V ) ) -> ( ( ( .1. .x. X ) e. V /\ ( .1. .x. ( X ( +g ` W ) X ) ) = ( ( .1. .x. X ) ( +g ` W ) ( .1. .x. X ) ) /\ ( ( .1. ( +g ` F ) .1. ) .x. X ) = ( ( .1. .x. X ) ( +g ` W ) ( .1. .x. X ) ) ) /\ ( ( ( .1. ( .r ` F ) .1. ) .x. X ) = ( .1. .x. ( .1. .x. X ) ) /\ ( .1. .x. X ) = X /\ ( ( 0g ` F ) .x. X ) = ( 0g ` W ) ) ) ) | 
						
							| 16 | 15 | simprd |  |-  ( ( W e. SLMod /\ ( .1. e. ( Base ` F ) /\ .1. e. ( Base ` F ) ) /\ ( X e. V /\ X e. V ) ) -> ( ( ( .1. ( .r ` F ) .1. ) .x. X ) = ( .1. .x. ( .1. .x. X ) ) /\ ( .1. .x. X ) = X /\ ( ( 0g ` F ) .x. X ) = ( 0g ` W ) ) ) | 
						
							| 17 | 16 | simp2d |  |-  ( ( W e. SLMod /\ ( .1. e. ( Base ` F ) /\ .1. e. ( Base ` F ) ) /\ ( X e. V /\ X e. V ) ) -> ( .1. .x. X ) = X ) | 
						
							| 18 | 5 8 8 9 9 17 | syl122anc |  |-  ( ( W e. SLMod /\ X e. V ) -> ( .1. .x. X ) = X ) |