Metamath Proof Explorer


Theorem slmdvscl

Description: Closure of scalar product for a semiring left module. ( hvmulcl analog.) (Contributed by NM, 8-Dec-2013) (Revised by Mario Carneiro, 19-Jun-2014) (Revised by Thierry Arnoux, 1-Apr-2018)

Ref Expression
Hypotheses slmdvscl.v V = Base W
slmdvscl.f F = Scalar W
slmdvscl.s · ˙ = W
slmdvscl.k K = Base F
Assertion slmdvscl W SLMod R K X V R · ˙ X V

Proof

Step Hyp Ref Expression
1 slmdvscl.v V = Base W
2 slmdvscl.f F = Scalar W
3 slmdvscl.s · ˙ = W
4 slmdvscl.k K = Base F
5 biid W SLMod W SLMod
6 pm4.24 R K R K R K
7 pm4.24 X V X V X V
8 eqid + W = + W
9 eqid 0 W = 0 W
10 eqid + F = + F
11 eqid F = F
12 eqid 1 F = 1 F
13 eqid 0 F = 0 F
14 1 8 3 9 2 4 10 11 12 13 slmdlema W SLMod R K R K X V X V R · ˙ X V R · ˙ X + W X = R · ˙ X + W R · ˙ X R + F R · ˙ X = R · ˙ X + W R · ˙ X R F R · ˙ X = R · ˙ R · ˙ X 1 F · ˙ X = X 0 F · ˙ X = 0 W
15 14 simpld W SLMod R K R K X V X V R · ˙ X V R · ˙ X + W X = R · ˙ X + W R · ˙ X R + F R · ˙ X = R · ˙ X + W R · ˙ X
16 15 simp1d W SLMod R K R K X V X V R · ˙ X V
17 5 6 7 16 syl3anb W SLMod R K X V R · ˙ X V