Metamath Proof Explorer


Theorem slotsdnscsi

Description: The slots Scalar , .s and .i are different from the slot dist . Formerly part of sralem and proofs using it. (Contributed by AV, 29-Oct-2024)

Ref Expression
Assertion slotsdnscsi distndxScalarndxdistndxndxdistndx𝑖ndx

Proof

Step Hyp Ref Expression
1 5re 5
2 1nn 1
3 2nn0 20
4 5nn0 50
5 5lt10 5<10
6 2 3 4 5 declti 5<12
7 1 6 gtneii 125
8 dsndx distndx=12
9 scandx Scalarndx=5
10 8 9 neeq12i distndxScalarndx125
11 7 10 mpbir distndxScalarndx
12 6re 6
13 6nn0 60
14 6lt10 6<10
15 2 3 13 14 declti 6<12
16 12 15 gtneii 126
17 vscandx ndx=6
18 8 17 neeq12i distndxndx126
19 16 18 mpbir distndxndx
20 8re 8
21 8nn0 80
22 8lt10 8<10
23 2 3 21 22 declti 8<12
24 20 23 gtneii 128
25 ipndx 𝑖ndx=8
26 8 25 neeq12i distndx𝑖ndx128
27 24 26 mpbir distndx𝑖ndx
28 11 19 27 3pm3.2i distndxScalarndxdistndxndxdistndx𝑖ndx