Metamath Proof Explorer
		
		
		
		Description:  Surreal less-than is transitive.  (Contributed by Scott Fenton, 8-Dec-2021)
		
			
				
					|  |  | Ref | Expression | 
					
						|  | Hypotheses | slttrd.1 |  | 
					
						|  |  | slttrd.2 |  | 
					
						|  |  | slttrd.3 |  | 
					
						|  |  | slttrd.4 |  | 
					
						|  |  | slttrd.5 |  | 
				
					|  | Assertion | slttrd |  | 
			
		
		
			
				Proof
				
					
						| Step | Hyp | Ref | Expression | 
						
							| 1 |  | slttrd.1 |  | 
						
							| 2 |  | slttrd.2 |  | 
						
							| 3 |  | slttrd.3 |  | 
						
							| 4 |  | slttrd.4 |  | 
						
							| 5 |  | slttrd.5 |  | 
						
							| 6 |  | slttr |  | 
						
							| 7 | 1 2 3 6 | syl3anc |  | 
						
							| 8 | 4 5 7 | mp2and |  |