Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Steven Nguyen
Real subtraction
sn-ltaddpos
Next ⟩
reposdif
Metamath Proof Explorer
Ascii
Unicode
Theorem
sn-ltaddpos
Description:
ltaddpos
without
ax-mulcom
.
(Contributed by
SN
, 13-Feb-2024)
Ref
Expression
Assertion
sn-ltaddpos
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
0
<
A
↔
B
<
B
+
A
Proof
Step
Hyp
Ref
Expression
1
0re
⊢
0
∈
ℝ
2
ltadd2
⊢
0
∈
ℝ
∧
A
∈
ℝ
∧
B
∈
ℝ
→
0
<
A
↔
B
+
0
<
B
+
A
3
1
2
mp3an1
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
0
<
A
↔
B
+
0
<
B
+
A
4
readdid1
⊢
B
∈
ℝ
→
B
+
0
=
B
5
4
adantl
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
B
+
0
=
B
6
5
breq1d
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
B
+
0
<
B
+
A
↔
B
<
B
+
A
7
3
6
bitrd
⊢
A
∈
ℝ
∧
B
∈
ℝ
→
0
<
A
↔
B
<
B
+
A