Metamath Proof Explorer


Theorem sn-ltaddpos

Description: ltaddpos without ax-mulcom . (Contributed by SN, 13-Feb-2024)

Ref Expression
Assertion sn-ltaddpos A B 0 < A B < B + A

Proof

Step Hyp Ref Expression
1 0re 0
2 ltadd2 0 A B 0 < A B + 0 < B + A
3 1 2 mp3an1 A B 0 < A B + 0 < B + A
4 readdid1 B B + 0 = B
5 4 adantl A B B + 0 = B
6 5 breq1d A B B + 0 < B + A B < B + A
7 3 6 bitrd A B 0 < A B < B + A