Metamath Proof Explorer


Theorem snelpwrVD

Description: Virtual deduction proof of snelpwi . (Contributed by Alan Sare, 25-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion snelpwrVD A B A 𝒫 B

Proof

Step Hyp Ref Expression
1 snex A V
2 idn1 A B A B
3 snssi A B A B
4 2 3 e1a A B A B
5 elpwg A V A 𝒫 B A B
6 5 biimprd A V A B A 𝒫 B
7 1 4 6 e01 A B A 𝒫 B
8 7 in1 A B A 𝒫 B