Description: Virtual deduction proof of snelpwi . (Contributed by Alan Sare, 25-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | snelpwrVD | |- ( A e. B -> { A } e. ~P B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | snex | |- { A } e. _V |
|
2 | idn1 | |- (. A e. B ->. A e. B ). |
|
3 | snssi | |- ( A e. B -> { A } C_ B ) |
|
4 | 2 3 | e1a | |- (. A e. B ->. { A } C_ B ). |
5 | elpwg | |- ( { A } e. _V -> ( { A } e. ~P B <-> { A } C_ B ) ) |
|
6 | 5 | biimprd | |- ( { A } e. _V -> ( { A } C_ B -> { A } e. ~P B ) ) |
7 | 1 4 6 | e01 | |- (. A e. B ->. { A } e. ~P B ). |
8 | 7 | in1 | |- ( A e. B -> { A } e. ~P B ) |