Metamath Proof Explorer


Theorem snelpwrVD

Description: Virtual deduction proof of snelpwi . (Contributed by Alan Sare, 25-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion snelpwrVD
|- ( A e. B -> { A } e. ~P B )

Proof

Step Hyp Ref Expression
1 snex
 |-  { A } e. _V
2 idn1
 |-  (. A e. B ->. A e. B ).
3 snssi
 |-  ( A e. B -> { A } C_ B )
4 2 3 e1a
 |-  (. A e. B ->. { A } C_ B ).
5 elpwg
 |-  ( { A } e. _V -> ( { A } e. ~P B <-> { A } C_ B ) )
6 5 biimprd
 |-  ( { A } e. _V -> ( { A } C_ B -> { A } e. ~P B ) )
7 1 4 6 e01
 |-  (. A e. B ->. { A } e. ~P B ).
8 7 in1
 |-  ( A e. B -> { A } e. ~P B )