Metamath Proof Explorer


Theorem unipwrVD

Description: Virtual deduction proof of unipwr . (Contributed by Alan Sare, 25-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion unipwrVD
|- A C_ U. ~P A

Proof

Step Hyp Ref Expression
1 vex
 |-  x e. _V
2 1 snid
 |-  x e. { x }
3 idn1
 |-  (. x e. A ->. x e. A ).
4 snelpwi
 |-  ( x e. A -> { x } e. ~P A )
5 3 4 e1a
 |-  (. x e. A ->. { x } e. ~P A ).
6 elunii
 |-  ( ( x e. { x } /\ { x } e. ~P A ) -> x e. U. ~P A )
7 2 5 6 e01an
 |-  (. x e. A ->. x e. U. ~P A ).
8 7 in1
 |-  ( x e. A -> x e. U. ~P A )
9 8 ssriv
 |-  A C_ U. ~P A