Description: Virtual deduction proof of unipwr . (Contributed by Alan Sare, 25-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | unipwrVD | |- A C_ U. ~P A |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vex | |- x e. _V |
|
| 2 | 1 | snid | |- x e. { x } |
| 3 | idn1 | |- (. x e. A ->. x e. A ). |
|
| 4 | snelpwi | |- ( x e. A -> { x } e. ~P A ) |
|
| 5 | 3 4 | e1a | |- (. x e. A ->. { x } e. ~P A ). |
| 6 | elunii | |- ( ( x e. { x } /\ { x } e. ~P A ) -> x e. U. ~P A ) |
|
| 7 | 2 5 6 | e01an | |- (. x e. A ->. x e. U. ~P A ). |
| 8 | 7 | in1 | |- ( x e. A -> x e. U. ~P A ) |
| 9 | 8 | ssriv | |- A C_ U. ~P A |