Metamath Proof Explorer


Theorem unipwrVD

Description: Virtual deduction proof of unipwr . (Contributed by Alan Sare, 25-Aug-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion unipwrVD 𝐴 𝒫 𝐴

Proof

Step Hyp Ref Expression
1 vex 𝑥 ∈ V
2 1 snid 𝑥 ∈ { 𝑥 }
3 idn1 (    𝑥𝐴    ▶    𝑥𝐴    )
4 snelpwi ( 𝑥𝐴 → { 𝑥 } ∈ 𝒫 𝐴 )
5 3 4 e1a (    𝑥𝐴    ▶    { 𝑥 } ∈ 𝒫 𝐴    )
6 elunii ( ( 𝑥 ∈ { 𝑥 } ∧ { 𝑥 } ∈ 𝒫 𝐴 ) → 𝑥 𝒫 𝐴 )
7 2 5 6 e01an (    𝑥𝐴    ▶    𝑥 𝒫 𝐴    )
8 7 in1 ( 𝑥𝐴𝑥 𝒫 𝐴 )
9 8 ssriv 𝐴 𝒫 𝐴