Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Alan Sare
Theorems proved using Virtual Deduction
unipwrVD
Metamath Proof Explorer
Description: Virtual deduction proof of unipwr . (Contributed by Alan Sare , 25-Aug-2011) (Proof modification is discouraged.)
(New usage is discouraged.)
Ref
Expression
Assertion
unipwrVD
⊢ 𝐴 ⊆ ∪ 𝒫 𝐴
Proof
Step
Hyp
Ref
Expression
1
vex
⊢ 𝑥 ∈ V
2
1
snid
⊢ 𝑥 ∈ { 𝑥 }
3
idn1
⊢ ( 𝑥 ∈ 𝐴 ▶ 𝑥 ∈ 𝐴 )
4
snelpwi
⊢ ( 𝑥 ∈ 𝐴 → { 𝑥 } ∈ 𝒫 𝐴 )
5
3 4
e1a
⊢ ( 𝑥 ∈ 𝐴 ▶ { 𝑥 } ∈ 𝒫 𝐴 )
6
elunii
⊢ ( ( 𝑥 ∈ { 𝑥 } ∧ { 𝑥 } ∈ 𝒫 𝐴 ) → 𝑥 ∈ ∪ 𝒫 𝐴 )
7
2 5 6
e01an
⊢ ( 𝑥 ∈ 𝐴 ▶ 𝑥 ∈ ∪ 𝒫 𝐴 )
8
7
in1
⊢ ( 𝑥 ∈ 𝐴 → 𝑥 ∈ ∪ 𝒫 𝐴 )
9
8
ssriv
⊢ 𝐴 ⊆ ∪ 𝒫 𝐴